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Within the latent growth curve model, time-invariant covariates are generally mod-
eled on the subject level, thereby estimating the effect of the covariate on the latent
growth parameters. Incorporating the time-invariant covariate in this manner may
have some advantages regarding the interpretation of the effect but may also be incor-
rect in certain instances. In this article we discuss a more general approach for model-
ing time-invariant covariates in latent growth curve models in which the covariate is
directly regressed on the observed indicators. The approach can be used on its own to
get estimates of the growth curves corrected for the influence of a 3rd variable, or it
can be used to test the appropriateness of the standard way of modeling the time-in-
variant covariates. It thus provides a test of the assumption of full mediation, which
states that the relation between the covariate and the observed indicators is fully me-
diated by the latent growth parameters.

Since its introduction in structural equation modeling (SEM) by McArdle (1986,
1988) and Meredith and Tisak (1984, 1990), latent growth curve (LGC) modeling
has seen an increasing number of applications in social and behavioral sciences.
Also, much literature has been devoted to the technical development of the LGC
model and its application to substantive research questions (e.g., Duncan, Duncan,
Strycker, Li, & Alpert, 1999; Hox, 2002; McArdle & Bell, 2000; Muthén & Khoo,
1998; Willett & Sayer, 1994). One of the purposes of LGC modeling is to relate
growth parameters to individual characteristics, background, and environmental
factors, to detect systematic interindividual differences in the individual growth
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curves. These time-invariant covariates, or individual-level predictors, are gener-
ally modeled on the subject level. A direct effect of the covariate is specified on the
parameters describing the growth curve (i.e., [initial] level and shape), which en-
ables one to investigate whether the covariate explains part of the interindividual
differences in the growth curves.

A disadvantage of modeling time-invariant covariates in this manner is that it is
based on the assumption that the relation between the covariate and the observed
indicators is fully mediated by the growth parameters. We refer to this assumption
as the assumption of full mediation. That is, it is assumed that the direct effect of
the time-invariant covariate on each of the indicators is equal to zero. The model
with this assumption relaxed (i.e., both types of effects specified) is not identified.
Consequently, if there are direct effects of the time-invariant covariate on the indi-
cators in the population, this standard way of modeling time-invariant covariates
will not be correct. Estimating the standard model in such situations leads to biased
estimates of the growth parameters, and erroneously high values of the chi-square
test of model fit. In this article we discuss an alternative approach for modeling
time-invariant covariates in LGC analysis that has not received much attention yet
in the literature. Moreover, we will show that the standard way of modeling
time-invariant covariates constitutes a special case of this approach.

A LATENT GROWTH CURVE MODEL WITH
TIME-INVARIANT COVARIATES

In general, time-invariant covariates are modeled on the subject, or factor level, of
the LGC model (e.g., Willett & Sayer, 1994), as presented in the Equations 1 to 3
of Model 1

yti = αt + λ0 η0i + λ1t η1i + εit (1)

η0i = ν0 + β0 zi + ζ0i (2)

η1i = ν1 + β1 zi + ζ1i (3)

in which zi represents the time-invariant covariate. It is used here as a predictor of
the latent level factor, η0i, and latent shape factor, η1i, with regression parameters
of, respectively, β0 and β1. The parameters ν0 and ν1 represent the means of, re-
spectively, the latent level and latent shape factor; λ0 is the basis function for the
level factor, and all its values are set equal to 1; λ1t, the basis function for the shape
factor, represents scores related to time (e.g., measurement occasion or age) and
may be fixed or partially estimated to represent nonlinear growth. Residual devia-
tions from the latent level and shape factor are represented by, respectively, ζ0i and
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ζ1i with variances ψ00 and ψ11, and εit is a time-specific residual with variance σ2εt.
The intercepts of the indicators are represented by αt. Because this model consists
of just one indicator per time point, αt will be fixed to zero. A linear variant of
Model 1 is represented as a path diagram in Figure 1, for four measurement occa-
sions, implying that λ1t equals [0, 1, 2, 3]. We refer to the references mentioned in
the first paragraph of this article for a detailed explanation of the LGC model.

Model 1, which we entitle the growth predictor model, presents the standard ap-
proach to the modeling of time-invariant covariates in LGC modeling, as well as in
multilevel regression (MLR) analysis (Bryk & Raudenbush, 1987, 1992;
Goldstein, 1987, 1995). An advantage of Model 1 is that the effect of the covariate
on the growth parameters can be inferred directly, and the proportion of variance of
the latent growth parameters explained by the covariate is produced by the soft-
ware, or it can be computed easily by hand. This is an attractive property of the
growth predictor model because it corresponds to the standard practice of current
statistical modeling as well as to the theoretical interest of many researchers. Of-
ten, our theories focus on factors to explain growth and the interindividual variabil-
ity in growth, and not in a description of latent growth curves per se. Modeling the
effect of time-invariant covariate on the latent level is a logical extension of the
LGC model from such perspective.

However, as noted previously, modeling a time-invariant covariate with direct
effects on the parameters describing the growth curve amounts to a very restricted
model. This model makes the assumption of full mediation. That is, it is assumed
that the direct effects of the covariate on the residual variances of the indicators is
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FIGURE 1 Growth predictor growth curve model (time-invariant covariate modeled on the
latent level). Latent factor intercepts are conceptualized as regression on a constant equal to one
(see Hancock et al., 2001). The curved double-headed arrow represents the correlation between
the latent factors.
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equal to zero. However, although the covariate is invariant over time, the effect of
the covariate on each of the indicators does not necessarily need to follow the pat-
tern forced by the basis function of the growth predictor model. In other words, if
the latent growth parameters do not fully mediate the effect of the time-invariant
covariate on the indicators, the covariate can be related to some of the residual vari-
ances of the indicators. If this is the case, Model 1 constitutes a misspecified model
because the direct effects of the covariate on the indicator variables are not speci-
fied. In an extreme case it might even be that the latent growth parameters do not
mediate the effect of the covariate at all. In that case, the covariate may have a di-
rect effect only on the indicators at some, but not all, of the time points. Such dif-
ferential effects cannot be incorporated in Model 1 because the effect of zi is mod-
eled on the latent level. Estimating Model 1 when the effect of the covariate does
not follow the pattern forced by the basis function of the growth predictor model
will lead to biased estimates of some of the model parameters and goodness-of-fit
measures, or it will cause convergence problems.

Fortunately, the growth predictor model is not the only way a time-invariant
covariate can be integrated in an LGC model. Time-invariant covariates can also be
modeled with direct effects on the indicators at each occasion as presented by
Equations 4 to 6 of Model 2, and Figure 2:

yti = αt + λ0 η0i + λ1t η1i + γt zi + εit (4)

η0i = ν0 + ζ0i (5)

η1i = ν1 + ζ1i (6)
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FIGURE 2 Direct effect growth curve model (time-invariant covariate modeled directly on
the observed indicators).
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where γt (having a time-specific subscript t) represents the effects of zi on each of
the t indicators. Assuming that at least one of the γt’s is significant, estimating the
model of Equations 4 to 6 implies that the growth parameters are estimated, after
the effect of the time-invariant covariate has been controlled for, or partialed out.
To put it differently, in Model 2, which shall be entitled as the direct effect model,
the growth curve will be estimated after being corrected for the effects of the
time-invariant covariate.1 In addition, where in the growth predictor model the
covariate could only account for the variances of the latent level and shape factor,
respectively, ψ00 and ψ11, it can now also account for the time-specific variance
σ2εt at each occasion. This may be important because if a relation of this type is
present between a time-invariant covariate and the residual variances, omitting
these relations from the model might lead to an unfair rejection of the model.

The Relation Between the Growth Predictor
and the Direct Effect Model

Although it may not be obvious at first sight, the growth predictor model (Model 1)
constitutes a special case of the direct effect model depicted in Model 2, as is
shown in Appendix A. Extra restrictions put on the direct effect model lead to the
growth predictor model, so that the growth predictor model is nested within the di-
rect effect model. The restrictions imposed on the direct effect model by assuming
that the covariate has an effect on the latent factor can therefore be tested explicitly
using a likelihood ratio test.

Although the direct effect model will give unbiased estimates of the growth pa-
rameters, computation of both the effect of the time-invariant covariate on the
growth parameters and the variance explained is more problematic because these
parameters may be confounded with the direct effects on the indicators. Here, a
distinction must be made between two cases: (a) The likelihood ratio test to test the
more restricted growth predictor model presented in Equations 1 to 3 against the
direct effect model presented in Equations 4 to 6 is not significant (i.e., the assump-
tion of full mediation holds), and (b) the likelihood ratio test is significant (i.e., vio-
lation of the assumption of full mediation).

The first case poses no special problems. The restrictions imposed by the model
can be accepted and the effects of the covariate on the latent growth parameters can
be interpreted, as well as their explained variance. However, in the second case,
where the likelihood ratio test indicates that the more restricted growth predictor
model has to be rejected, the assumption of full mediation is violated, and the
model needs to be estimated using the direct effect model. Any effect of the
time-invariant covariate on the latent growth parameters will now be confounded
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with the direct effects, γt*, of the covariate on the indicators. Given the basis func-
tion, λ1t, for the growth rate factor, the estimated effect, γt, of the time-invariant
covariate on the observed indicator at occasion t, will be

γt = λ0 β0 + λ1t β1 + γt* (7)

Equation 7 shows that the effect of the covariate on the indicator at time t now con-
sists of three parts. One part is due to the effect of the covariate on the latent level fac-
tor, the second part is due to the effect of the time-invariant covariate on the latent
growthrate factor,and the thirdpart is thedirecteffectof thecovariateonoccasion t.

Substituting Equation 7 into the direct effect model gives Model 3,

yti = αt + λ0 η0i + λ1t η1i + γt*zi + εit (8)

η0i = ν0 + β0 zi + ζ0i (9)

η1i = ν1 + β1 zi + ζ1i (10)

which can be regarded as a combination of Models 1 and 2. Model 3 is not identi-
fied without additional constraints and cannot be estimated as such. Thus, the
time-invariant covariate has to be treated as a true covariate, in the sense that no in-
ferences are made about its predictive value for the latent growth parameters.

Attractive solutions might be to either estimate the growth predictor model, and
thus constrain all γt* parameters to zero, or estimate the model using the direct effect
model, and thusconstrainβ0 andβ1tozero, and tocompute theexplainedvarianceby
hand (e.g., Willett & Sayer, 1994). However, as illustrated in the next section, both
solutions may lead to biased estimates of the respective explained variances because
both solutions use information from misspecified models.

EXAMPLE

In this section an illustration is given of the approach to model the effect of time-in-
variant covariates directly on the observed variables (Model 2: the direct effect
model). The approach is compared to the traditional way of modeling the effect of
the time-invariant covariate on the latent variables (Model 1: the growth predictor
model). Two artificial data sets are generated with Prelis 2.3 consisting of 300 sub-
jects (i), measured on 4 occasions (yti), and one time-invariant covariate (zi). The
data are generated such that they fit perfectly to the true model, being (a) an LGC
model with effects of covariate on the latent level and shape factor, or (b) an LGC
model with effects of the covariate on the observed variables of the first two occa-
sions. Subsequently, these data sets are analyzed twice using models correspond-
ing to Models 1 and 2. Thus, a total of four models are analyzed and the results are
compared pairwise. The data analyses are performed using the maximum likeli-
hood estimation procedure of LISREL 8.51. We refer to Appendixes B and C at the
end of this article for the corresponding covariance matrices and mean vectors. Ta-
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bles 1 and 2 present chi-square goodness-of-fit measures and parameter estimates.
The second column of Tables 1 and 2 presents the population values of the true
model according to which the data have been generated.

Table 1 presents the case in which the data have been generated with the effect
of the covariate on the latent level. It can be seen that, as expected, the estimates of
the parameters of the true model (the growth predictor model, Model 1a) match
perfectly with the population parameters. This model fits perfectly to the data,
χ2(7) = .00, p = 1.00. However, the model with the covariate modeled directly on
the observed variables (the direct effect model, Model 2a) also provides a perfect
fit to the data, be it with 2 df less, χ2(5) = .00, p = 1.00. As a result, estimates of the
growth parameters and test statistics are the same. Furthermore, it can be seen that
the effect of the covariate on the observed variables increases over time from γ1 = 1
to γ4 = 4. This is in correspondence with the pattern forced by the basis function for
the level factor, [1, 1, 1, 1], and the shape factor [0, 1, 2, 3]. The likelihood ratio
test, χ2(7 – 5) = .00, p = 1.00, does not lead to a rejection of the more restricted
Model 1a, which is in fact the true model.

The important message from Table 1 is that both models can recover the popu-
lation parameters when the covariate has an effect that is in correspondence with
the pattern forced by the basis functions for the level and shape factors. For reasons
of parsimony and ease of interpretation, modeling the covariate on the latent vari-
able might be preferred in this situation, as discussed before.

However, in some situations the two models do not lead to the same parameter
estimates and model fit. Table 2 presents the case in which the covariate has an ef-
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TABLE 1
Analysis of the Data Generated With an Effect of the Covariate on the

Latent Variable. Model 1a Represents the True Model

Parameter Population Value Model 1a Model 2a

Fixed part
ν0 10 10.00 (174.4) 10.00 (174.4)
ν1 2 2.00 (41.7) 2.00 (41.7)
β0 1 1.00 (17.4)
β1 1 1.00 (20.8)
γ1 0 1.00 (16.8)
γ2 0 2.00 (26.5)
γ3 0 3.00 (27.3)
γ4 0 4.00 (26.52)

Random part
σ2εt .25 .25/ .25/ .24/ .24 .25/ .25/ .24/ .24
ψ00 .81 .81 (9.7) .81 (9.7)
ψ11 .64 .64 (11.3) .64 (11.3)
ψ01 0 .00 (.0) .00 (.0)
χ2 χ2(7) = .00; p = 1.00 χ2(5) = .00; p = 1.00

Note. Test statistics (est./SE) are given in parentheses.



fect on just the first two occasions. Although this might be considered an extreme
case that does not occur in reality, it represents a clear violation of the assumption
of full mediation, and it illustrates the possibilities of the alternative direct effect
model proposed here.

Model 2b, which is the true model, perfectly recovers the population parame-
ters of both the growth parameters and the effects of the covariate. Model 1b, how-
ever, does provide correct estimates of the means, variances, and covariance of the
latent level and shape factors, but the estimated effects of the covariate are not cor-
rect. According to Model 1b, the time-invariant covariate explains, respectively,
27% and 5% of the intercept and slope factors, whereas these effects are in fact
equal to zero in the population. At the same time the effects of the covariate on the
observed variables given the basis function for the level and shape factor of Model
1b are computed by hand as, respectively, γ1 = .54, γ2 = .35, γ3 = .16, γ4 = –.03.
These effects are, as expected, also unequal to the population parameters accord-
ing to which the data have been generated. In addition, the fit of the model is bad,
χ2(7) = 55.35, p = .00. As a consequence, the likelihood ratio test, χ2(7 – 5) =
55.35, p = .00, leads to a rejection of Model 1b in favor of Model 2b. A comparison
of the variances of the growth parameters of the direct effect model (Model 2b)
with the estimates of an LGC model without the time-invariant covariate as pre-
sented in Table 3 (Model 4) to compute the explained variance gives similar results
as previously shown. Although in the population the effect of the covariate on the
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TABLE 2
Analysis of the Data Generated With an Effect of the Covariate

on the Observed Variables at the First Two Occasions. Model 2b
Represents the True Model

Parameter Population Value Model 1b Model 2b

Fixed part
ν0 10 10.00 (155.5) 10.00 (174.3)
ν1 2 2.00 (40.7) 2.00 (41.7)
β0 0 .54 (9.4)
β1 0 –.19 (–4.0)
γ1 .5 .5 (8.4)
γ2 .5 .5 (6.6)
γ3 0 .00 (.0)
γ4 0 .00 (.0)

Random part
σ2εt .25 .24/ .29/ .31/ .18 .25/ .25/ .25/ .25
ψ00 .81 .81 (9.6) .81 (9.6)
ψ11 .64 .65 (11.3) .64 (11.2)
ψ01 0 –.00 (–.1) –.00 (–.0)
χ2 χ2(7) = 55.35; p = .00 χ2(5) = .00; p = 1.00

Note. Test statistics (est./SE) are given in parentheses.



growth parameters is equal to zero, this comparison gives, respectively, 28% and
7% explained variance for the intercept and growth parameters.

DISCUSSION

This article discusses ways to model the effect of time-invariant covariates in LGC
modeling, and it introduces the assumption of full mediation. The standard way of
modeling the time-invariant covariates (i.e., by using the growth predictor model in
which an effect of the time-invariant covariate on the latent growth parameters is
specified) has some attractive properties but may not always be appropriate. It is pro-
posed that a less restrictive model with a direct effect of the time-invariant covariate
on the indicators could be a better choice in such instances. This, so-called direct ef-
fect model also enables an explicit test of the assumption of full mediation, and it
could be a viable alternative if the growth predictor model is rejected. Comparable
modelshavealreadybeenproposed inSEMinadifferentcontext.For instance, in the
context of research on method variance, where it has been attempted to measure the
variables associated with method effects and to regress the other (substantive) indi-
cators directly on this latent method factor (Williams & Anderson, 1994). In the area
of LGC modeling this approach has received no attention, however.

Basically, the difference between the growth predictor model and the direct ef-
fect model lies in the (implicit) definition of the third variable (i.e., the time-invari-
ant covariate), and in the substantive goal of the LGC analysis. In the direct effect
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TABLE 3
Analysis of the Same Data as Table 2. Model 4 Represents an LGC Model

Without the Time–Invariant Covariate

Parameter Population Value Model 4

Fixed part
ν0 10 9.99 (153.4)
ν1 2 2.00 (40.7)
β0 0
β1 0
γ1 .5
γ2 .5
γ3 0
γ4 0

Random part
σ2εt .25 .17/ .33/ .31/ .16
ψ00 .81 1.13 (10.3)
ψ11 .64 .69 (11.5)
ψ01 0 –.12 (–2.1)
χ2 χ2(5) = 8.46; p = .13

Note. Test statistics (est./SE) are given in parentheses.



model, where the indicators are directly regressed on the time-invariant covariate,
it should be regarded as a true covariate. The main interest here is in estimates of
the LGC model corrected for nuisance, and the growth curves are estimated, cor-
rected for the influence of the covariate. No special attention is given to the effect
of the covariate; it is just used to get an unbiased estimate of the LGC model.

This situation is different, however, in the growth predictor model, where the ef-
fect of the time-invariant covariate is modeled on the latent growth parameters. In
this model the time-invariant covariate is used as a predictor of the growth parame-
ters, and the substantive interest is in both the LGC model and the prediction by the
time-invariant covariate. In other words, the third variable is given an additional in-
terpretation in this model. Besides the fact that the variable has covariation with the
indicators, it is also regarded as having predictive value for the growth curves. This
has been illustrated in the example: Whereas the growth predictor model repre-
sented the true model, the direct effect model also provided a good fit to the data. In
summary, predictive value of a variable for the latent growth parameters in an LGC
model implies covariation of this variable with the indicators; on the other hand,
covariation with the observed indicators does not imply predictive value.

The model advocated here has not received much attention in LGC modeling.
Neitherhas it in thecognateareaof longitudinalmultilevelanalysis,where the impli-
cations are equivalent. However, the idea of regressing a covariate directly on the ob-
served indicators is not new, but as noted by Rovine and Molenaar (2001), it is im-
plicit in any standard ANCOVA. Moreover, Rovine and Molenaar stated that, “To
include a covariate in fitting the SEM variants of multilevel models one must regress
out the covariate not at the latent-variable level but at the level of the measurement
model” (p. 90). A plausible explanation why this has not been picked up in practice
might be that most theories explicitly posit predictive characteristics to covariates,
leading credibly to the standard way of modeling the covariate as a predictor of the
latent growth parameters. As we have shown, however, the standard approach (i.e.,
the growth predictor model) may be incorrect in certain instances, whereas the advo-
cateddirecteffectmodelperformswell.Furthermore, it is shownthat theplausibility
of the standard growth predictor model can be investigated by comparing it directly
to the direct effect model using a likelihood ratio test. This comparison provides a
test of the assumption that the effect of the covariate is fully mediated by the growth
parameters.
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APPENDIX A

The following pages show that the growth predictor model (Model 1) can be con-
sidered a special case of the direct effect model (Model 2). For ease of presenta-
tion, it is assumed that the means of the latent variables are equal to zero. To keep
the presentation in line with the previously discussed models, we focus on a linear
growth model with 4 time points. However generalizations to LGC models with a
different number of time points are straightforward.

In the exposition following, the time-invariant covariate, zi, is treated as a per-
fectly measured η-variable (η2), making it possible to specify the model entirely in
theso-calledLisrel“ally”model.Tocompare thesemodels,wefirstexpressModel1
(the growth predictor model) and Model 2 (the direct effect model) in matrices.

In the case of 4 time points, Model 1 can be written as follows:
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where

Combining 12 and 13 gives

Model 2 is represented by

where

Combining 15 and 16 gives

implying that Model 2 is identical to Model 1 if the following restrictions are
imposed:

γ3 = 2γ2 – γ1 (17)

γ4 = 3γ2 – 2γ1 (18)

166 STOEL, VAN DEN WITTENBOER, HOX

0 0 0 0 0 2 0 0 2 0

1 1 1 1 1 2 1 1 2 1

2 2 2 2 2

0 0

0 0 (12)

0 0 0

η β η ζ β η ζ β ζ ζ
η β η ζ β η ζ β ζ ζ
η η ζ ζ ζ

� � � � � � � � � � � �� �
� � � � � � � � � � � �
� � � � � � � � � � � �� � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �� � � � � � � � � � � �

1 1 0 1 0 1 2 1

0 2 02 2 0 1 0 1 2 2

1 2 13 3 0 1 0 1 2 3

24 4

5

1 0 0 0 ( 0 )

1 1 0 1 ( 1 )

1 2 0 2 ( 2 )

1 3 0

0 0 1 0

y

y

y

y

y

ε ζ ζ β β ζ ε
β ζ ζ ε ζ ζ β β ζ ε
β ζ ζ ε ζ ζ β β ζ ε

ζ ε ζ

� � � � � � � 	 � � 	 �
� � � � � �
� � � � � �� �� � 	 � � 	 �
� � � � � �� �
� � � � � �� �� � � � � 	 � � 	 �� � � � � �� �
� � � � � �� �

� �� � � � � �� �
� � � � � �
� � � � � �� � � � � �

0 1 0 1 2 4

2

(13)

3 ( 3 )ζ β β ζ ε
ζ

� �
� �
� �
� �
� �
� �
� �� 	 � � 	 �� �
� �
� �� �

1 1 1

02 2 2

13 3 3

24 4 4

5

1 0

1 1

(14)1 2

1 3

0 0 1 0

y

y

y

y

y

γ ε
ηγ ε
ηγ ε
ηγ ε

� � � � � �
� � � � � �
� � � � � �� �
� � � � � �� �
� � � � � �� �� �
� � � � � �� �
� � � � � �� �

� �� � � � � �� �
� � � � � �
� � � � � �� � � � � �

0 0

1 1

2 2

(15)

η ζ
η ζ
η ζ

� � � �
� � � �
� � � ��
� � � �
� � � �
� � � �� � � �

1 1 1 0 1 1 2 1

02 2 2 0 1 2 2 2

13 3 3 0 1 3 2 3

24 4 4 0 1 4 2 4

5 2

1 0 0

1 1 1

1 2 2

1 3 3

0 0 1 0

y

y

y

y

y

γ ε ζ ζ γ ζ ε
ζγ ε ζ ζ γ ζ ε
ζγ ε ζ ζ γ ζ ε
ζγ ε ζ ζ γ ζ ε

ζ

� � � � � � � � 	 � �
� � � � � � �
� � � � � � �� � � 	 � �
� � � � � � �� �
� � � � � � �� �� � � � 	 � �� � � � � � �� �
� � � � � � �� � � 	 � �� �� � � � � � �� �
� � � � � � �
� � � � � � �� � � � � � �

(16)

�
�
�
�
�
�
�
�
�
��



Following the conditions for nesting (e.g., Bollen, 1989, p. 291), we may con-
clude that Model 1 is nested within Model 2. In other words, if Model 1 represents
the true model, then Model 2 will give identical parameter estimates if Restrictions
18 and 19 are imposed. In addition, if Model 1 represents the true model, the effect
of the covariate on, respectively, the level and shape factor is represented by

β0 = γ1 (19)

β1 = γ2 – γ1 (20)
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APPENDIX B
Covariance Matrix and Means Vector of the Data Generated With an Effect

of the Covariate on the Latent Variable

z y1 y2 y3 y4 M

z .997 0
y1 .998 2.057 10
y2 1.995 2.805 5.681 12
y3 2.995 3.804 8.069 12.585 14
y3 3.990 4.801 10.701 16.612 22.757 16

APPENDIX C
Covariance Matrix and Means Vector of the Data Generated With an Effect

of the Covariate on the Observed Variables at the First Two Occasions

z y1 y2 y3 y4 M

z .996 0
y1 .499 1.309 10
y2 .499 1.059 1.944 12
y3 .000 .811 2.084 3.610 14
y3 .000 .810 2.722 4.640 6.804 16


