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x.1 Multilevel Models for Change Over Time 
 
 
Multilevel or mixed models are becoming standard modeling tools for longitudinal or 
repeated measures data. Compared to the classic Manova approach, they have several 
advantages. Firstly, they deal efficiently with panel dropout; because there is no assumption 
that each subject must be measured on the same number of occasions, subjects with 
incomplete data are simply retained in the data set. The assumption is that incomplete data 
are missing at random (Little, 1995), which is weaker than the assumption of missing 
completely at random, which is made by applying listwise deletion in Manova. Secondly, it is 
possible to include time-varying covariates in the model. Thirdly, using polynomial functions 
or piecewise regression the change over time can be modeled very flexibly. Finally, by 
allowing regression coefficients for the change model to vary across subjects, different 
subjects can have their own trajectory of change, which can in turn be modeled by time 
invariant subject characteristics. 
 It is useful to distinguish between repeated measures that are collected at fixed or at 
varying occasions. If the measurements are taken at fixed occasions, all individuals provide 
measurements for the same set of occasions, usually regularly spaced, such as once every 
year. When occasions are varying, a different number of measures is collected at different 
points in time for different individuals. Such data occur, for instance, in growth studies, 
where physical or psychological characteristics are studied for a set of individuals at different 
moments in their development. The data collection could be at fixed moments in the year, but 
the individuals would have different ages at that moment. For a multilevel analysis of the 
resulting data, the difference between fixed and varying occasions is not very important. For 
fixed occasion designs, especially when the occasions are regularly spaced and there are no 
missing data, repeated measures Manova is a viable alternative for multilevel analysis. 
Another possibility in such designs is latent curve analysis, also known as latent growth curve 
analysis. This is a structural equation model (cf. Willett & Sayer, 1994) that models a 
repeated measures polynomial analysis of variance. This chapter focuses on fixed occasion 
data. In addition to the familiar multilevel model equations, it uses path diagrams to clarify 
the models, but the analysis concentrates on the multilevel regression approach. In fact, 
multilevel models and structural equation models for change over time are just different 
representations of the same underlying model. Bollen and Curran (2006) provide a thorough 
discussion of longitudinal models from a structural equation perspective, and Hedeker and 
Gibbons (2006) provide a comparable discussion from the multilevel regression perspective. 
Duncan, Duncan & Strycker (2006) provide an introduction to longitudinal modeling from 
both perspectives. 

The multilevel regression model for longitudinal data is a straightforward application of 
the standard multilevel regression mode, with measurement occasions within subjects replacing 
the subjects within groups structure. At the lowest, the repeated measures level, we have: 
 
 Yti = π0i + π1iTti + π2iXti + eti .      (x.1) 
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In repeated measures applications, the coefficients at the lowest level are often indicated by the 
Greek letter π. This has the advantage that the subject level coefficients, which are in repeated 
measures modeling at the second level, can be represented by the usual Greek letter β, and so on. 
In equation (x.1), Yti is the response variable of individual i measured at time point t, T is the 
time variable that indicates the time point, and Xti is a time varying covariate. Subject 
characteristics, such as gender, are time invariant covariates, which enter the equation at the 
second level: 
 
 π0i = β00 + β01Zi + u0i , (x.2) 
 π1i = β10 + β11Zi + u1i , (x.3) 
 π2i = β20 + β21Zi + u2i . (x.4) 
 
By substitution, we get the single equation model: 
 
 Yti = β00 + β10Tti + β20Xti + β01Zi + β11ZiTti + β21ZiXti + 
  u1iTti + u2iXti + u0i + eti  .     (x.5) 
 
In multilevel models for subjects within groups, there is an assumed dependency between the 
subjects who are in the same group. Most often, there is no need to assume a specific 
structure for this dependency. Subjects within the same group are assumed exchangeable, and 
the intraclass correlation refers to the average correlation between two randomly chosen 
subjects from the same group. In multilevel models for occasions within subjects, 
measurement occasions are not freely exchangeable, because they are ordered in time. In 
such models, it often does make sense to assume a structure for the relationships between 
measurements across time. For example, an intuitively attractive assumption is that 
correlations between measures taken at different measurement occasions are higher when 
these occasions are close to each other in time. 
 Longitudinal designs often concern the analysis of structured change, such as growth 
or decline over time. The appropriate model for such research problems is a latent curve 
model, where change in the outcome variable is modeled as a function of time. As outlined 
above, the use of polynomials and varying regression coefficients makes this a very flexible 
analysis tool. As will be explained in more detail below, allowing coefficients for time to 
vary across subjects implies specific dependency structures. Since the focus is on modeling 
individual trajectories, the possibility of specifying specific structures across time is usually 
not explored. 
 Panel designs are longitudinal designs where the emphasis is on changes that do not 
follow a pattern of growth or decline across time. An example is using a panel to monitor 
satisfaction with the government. Satisfaction with the government is not expected to 
increase or decrease continuously. However, it is expected to fluctuate, and we may be able 
to predict these fluctuations with time varying covariates that capture events that occur at 
different occasions. Here, time is not a relevant predictor variable. Still, it is logical to assume 
that there is a dependency structure over time, which cannot be ignored. In this case, 
exploring specific structures across time is very important. 
 Although modeling the dependencies over time can be done implicitly, by allowing 
random coefficients for the time-variable, or explicitly, by specifying a specific structure, 
these approaches can also be combined. The remainder of this chapter discusses latent curve 
modeling, explicit modeling of dependency over time, and combining these approaches. The 
discussion takes up the issue when specific approaches are useful. 
 
 



 3

x.2 Multilevel Models for Structured Change Over Time 
 
For structured change over time, we will use an example data set constructed by Patrick 
Curran This data set, hereafter called the Curran data, was compiled from a large 
longitudinal data set. Supporting documentation and the original data files are available on 
Internet (Curran, 1997); the following description is excerpted from Curran (1997). 

The Curran data are a sample of 405 children who were within the first two years of 
entry to elementary school. The data consist of four repeated measures of both the child's 
antisocial behavior and the child's reading recognition skills. In addition, at the first 
measurement occasion, measures were collected of emotional support and cognitive 
stimulation provided by the mother. These data are a sub-sample from the National 
Longitudinal Survey of Youth (NLSY), based on three key criteria. First, children must have 
been between the ages of 6 and 8 years at the first wave of measurement. Second, children 
must have complete data on all measures used at the first measurement occasion. Third, only 
one child was considered from each mother. All N=405 children and mothers were 
interviewed at measurement occasion 1; on the three following occasions the sample sizes 
were 374, 297 and 294. Only 221 cases were interviewed at all four occasions.  
The time varying variables are Antisocial Behavior (anti1–4) and Reading Recognition 
(read1–4). The time invariant variables are Emotional Support to the child (homeemo) and 
Cognitive Stimulation (homecog), Mother's Age (momage) and Child Age (kidage) in years 
at Time 1, and the child’s gender (kidgen). 
 In this example, reading recognition is the outcome variable. A simple start model for 
the effect over time is to include measurement occasion as a predictor variable (coded 
0,1,2,3), and allow only the intercept to vary across subjects. It turns out that the relationship 
between occasion and reading is nonlinear, and a quadratic term is added to the model. The 
results are given in the first column of Table x.1 (REML estimates) 

Table x.1 shows in the fixed part the regression coefficients, and in the random part 
the residual variance at the lowest level and the (co)variances at the second level, with 
standard errors in parentheses. All parameter estimates are significant by the Wald test, the 
variances are also significant using the more accurate likelihood ratio test. 
 

----- insert table x.1 about here ----- 
 
The regression coefficients in the first column of Table x.1 indicate a mean reading 
recognition score of 2.54 at the first measurement occasion. The linear effect indicates that 
the reading score goes up at each occasion, and the negative quadratic effect indicates that 
this effect levels off at later occasions. 
 The second column in Table x.1 presents the results from the model where the 
regression coefficient for occasion varies across subjects. The variance of this coefficient is 
clearly significant. A third model with a varying coefficient for the quadratic component 
indicated no variance for that coefficient. To model the variance of the occasion coefficient 
interactions of other predictor variables with occasion must be added to the model. Cognitive 
stimulation and the child’s age predict reading, but there are no significant interactions. To 
simplify the exposition, the other variables are not included in the model here. The model 
with varying coefficients for the linear effect of occasion is presented as a SEM diagram in 
Figure x.1. Note that for complete correspondence with the multilevel regression approach, 
the variances of the four errors must be constrained to be the same. 

 
----- insert figure x.1 about here ----- 
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The two models that underlie Table x.1 have different consequences for the pattern of 
covariances between reading measures over time. The combined model for the varying 
coefficient for occasion is: 
 
 Yti = β00 + β10Tti + u1iTti + u0i + eti .     (x.6) 
 
In this model, the variance at a specific measurement occasion is given by (Goldstein, 2002; 
Raudenbush, 2002): 
 
 ( ) 2 2 2 2

0 0 1 12ti u ti u u ti u eVar Y T Tσ σ σ σ= + + + .    (x.7) 
 
The covariance between two measurement occasions is given by (Goldstein, 2002; 
Raudenbush, 2002): 
  
 ( ) ( )2 2

, ' 0 ' 0 1 ' 1ti t i u ti t i u u ti t i uCov T T T T Tσ σ σ= + + + .    (x.8) 
 
Together, equations x.7 and x.8 specify a very restricted pattern for the variances and 
covariances across time. The pattern for the fixed occasion model is even more specific. By 
removing terms that refer to Tti we obtain: 
 
 ( ) 2 2

0ti u eVar Y σ σ= +        (x.9) 
 
and 
 
 ( ) 2

, ' 0ti t i uCov T σ= .       (x.10) 
 
The model with only a random intercept assumes that all variances are the same, and all 
covariances are the same. In the Manova context, this assumption is known as compound 
symmetry, and considered highly restrictive. 
  

----- insert table x.2 about here ----- 
 
Table x.2 presents the observed means and variances and the means and variances implied by 
the Occasion Fixed and Occasion Random model. It is clear that the random coefficient 
model is predicting the observed variances fairly well. It should be noted that some 
discrepancy is to be expected, because the observed means and variances are based on the 
non-missing cases at each measurement occasion, and the model predictions are predictions 
for the entire sample, assuming missing at random for the missing data. 
 
 

x.3 Multilevel Models for Unstructured Change Over Time 
 
As noted in the introduction, there are situations where it makes no sense to assume perpetual 
growth or decline, while it is still interesting to model change and predictors of change. The 
term ‘unstructured change’ is used to indicate that there is no long-term trend to model. 
 The example data are simulated to reflect a diary study, in which changes are 
expected but no overall trend. In this hypothetical study, a sample of 60 workers who work in 
a stressful work environment are asked to fill in a diary for 2 weeks (only working days). The 



 5

study uses a State-Trait Anxiety Inventory. Trait anxiety (TraitAnx), which is assumed to be 
a relatively stable individual characteristic, is measured only on the first day. State anxiety 
(StateAnx), which is assumed to be a transitory mood state, is measured each day. Both 
scales are commonly normed to T-scores which have a mean of 50 and a standard deviation 
of 10 in the test’s norm group. In addition, the study collects daily data on perceived job 
demands (7-point scale) and perceived social support (7-point scale). 
 For such data, no large differences are expected for the average anxiety on different 
days. This is borne out by a repeated measures Manova which finds no differences across the 
10 days. The linear trend over time tested by Manova is also not significant. Figure x.2 
presents a SEM diagram for repeated measures Manova. To test equality of means in a SEM 
context, the model in Figure x.2 is compared to a model where the means are constrained to 
be equal. 
 

----- insert figure x.2 about here ----- 
 
Note that the path diagram explicitly shows that Manova estimates the variances and 
covariances for all measures over time. Manova is an unstructured model, there is no specific 
structure assumed for this covariance matrix. To model correlated errors in multilevel 
regression, we use a multivariate response model with a lowest level for the repeated measures, 
and a full set of dummy variables indicating the different occasions. Thus, we have 10 dummy 
variables, one for each day. The intercept term is removed from the model, and the variance of 
the lowest level residuals is constrained to zero. The dummy variables are all allowed to have 
random slopes at the second level. The equation for a model without further explanatory 
variables becomes: 
 

1 1 10 10 1 1 1 1tiY D D u D u Dβ β= +… … .     X.11 
 
Having ten random slopes at level two provides us with a 106×10 covariance matrix for the ten 
consecutive days. The regression slopes β1 to β10 are simply the estimated means at the ten 
occasions. Equation 5.11 defines the multilevel model that is equivalent to the Manova 
approach. Maas and Snijders (2002) discuss this model at length, and show how the familiar F-
ratio’s can be calculated from the multilevel software output.  

The model in equation 5.11 is fully saturated; it estimates all means and all 
(co)variances. Both the fixed part and the random part can be simplified. We can replace the 
fixed part by a regression equation that includes predictors such as the state anxiety and the time 
varying predictors job demands and social support. This models the state anxiety in a more 
interesting way, as the result of the combination of trait anxiety and different pressures at work. 
In addition we have a more parsimonious model, since we replace ten estimated means with 
four estimates for the intercept and the three regression coefficients. 
 The covariance matrix for the ten occasions has no restrictions. If we impose the 
restriction that all variances are equal, and that all covariances are equal, we have again the 
compound symmetry model. This shows that the model with occasion as fixed is one way to 
impose the compound symmetry structure on the random part of the model. Consequently, 
these models are nested, and we can use the overall chi-square test based on the deviance of 
the two models to test if the assumption of compound symmetry is tenable. 
 Models that assume a saturated model for the error structure are very complex. If there 
are k time points, the number of elements in the covariance matrix for the occasions is k(k+1)/2. 
So, with ten occasions, we have 55 (co)variance parameters to be estimated. If the assumption of 
compound symmetry is tenable, this model is preferable, because the random part contains only 
two parameters to be estimated. However, the compound symmetry model is very restrictive, 
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because it assumes that there is one single value for all correlations between time points. This 
assumption is not very realistic, because the error term contains all omitted sources of variation, 
which may be correlated over time. Different assumptions about the autocorrelation over time 
lead to different structures of the covariance matrix across the occasions. For instance, it is 
reasonable to assume that occasions that are close together in time have a higher correlation than 
occasions that are far apart. Accordingly, the elements in the covariance matrix Σ should become 
smaller, the further away they are from the diagonal. Such a correlation structure is called a 
simplex. A more restricted version of the simplex is to assume that the autocorrelation between 
the occasions follow the first order autoregressive model 
 
 et = ρ et-1 + ε        (x.12) 
  
where et is the error term at occasion t, ρ is the autocorrelation, and ε is a residual error with 
variance σε². The error structure in equation (5.15) is a first order autoregressive process. This 
leads to a covariance matrix of the form: 
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( )
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   (x.13) 

 
The first term σε²/(1-ρ²) is a constant, and the autocorrelation coefficient ρ is between –1 and +1, 
but typically positive. It is possible to have second order autoregressive processes, and other 
models for the error structure over time. The autoregressive model that produces the simplex in 
equation x.13 estimates one variance plus an autocorrelation. It is just as parsimonious as the 
compound symmetry model, but does not assume constant variances and covariances. The path 
diagram in Figure x.3 illustrates this model. 

 
----- insert figure x.3 about here ----- 

 
Presenting the model as a SEM path diagram immediately suggests other structures for the 
dependency over time. Some often used structures are discussed by Hox (2002) and in more 
detail by Hedeker and Gibbons (2006). When multilevel regression is used, some structures, 
such as compound symmetry or the saturated model are easy to specify. Other structures are 
more difficult or impossible, unless the software producers have built in an option for specific 
structures. Many programs have these, for instance, both specialized programs like HLM and 
SuperMix and general packages like SPSS and SAS have a number of structures for 
dependency across time built in. 
 
 

x.4 Choosing Between Structures and Combined Models 
 
x.4.1 Choosing Between Structures 
 
As explained in section x.2, allowing time varying covariates, including indicators for the 
measurement occasions, to vary across subjects, implies certain covariance structures over 
time. In addition, some software allows direct specification of specific covariance structures, 
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for example an autoregressive model. As a consequence, an observed set of relationships over 
time can often be modeled about equally well by two different approaches. Any of such 
models is nested within the fully saturated model, which means that a likelihood ratio test or 
the equivalent chi-square deviance difference test can be used to asses their fit. However, a 
model allowing random slopes and a model directly specifying a covariance structure are not 
nested, and can only be compared using absolute fit indices such as Akaike’s AIC of 
Schwarz’s BIC. The AIC can be calculated from the deviance d and the number of estimated 
parameters q: 
 
 AIC =d + 2q,        (x.14) 
 
and the BIC can be calculated as: 
 
 BIC = d + qLn(N) .       (x.15) 
 
When the deviance goes down, indicating a better fit, both the AIC and the BIC also tend to go 
down. However, the AIC and the BIC include a penalty function based on the number of 
estimated parameters q. When the number of estimated parameters goes up, the AIC and BIC 
tend to go up too. For most sample sizes, the BIC places a larger penalty on complex models, 
which leads to a preference for smaller models compared to AIC. A problem with BIC in 
multilevel analysis is what the relevant sample size is: the number of groups or the total number 
of individuals? Most software that reports BIC uses the latter. However, in the context of 
longitudinal data, the number of subjects (i.e. the number of second level units) appears also 
reasonable. When a SEM package is used to specify the model, N is always the number of 
subjects. When a multilevel regression package is used, either level can supply the N, and the 
manual should be consulted to find out what the model does, or BIC must be calculated 
manually. Hedeker and Gibbons (2006), referring to Raftery (1995), advise to use the number of 
subjects, a practice we will follow here. 
 As an example, we model the state-anxiety data in several ways. The fixed part has three 
predictors: Trait Anxiety at the subject level and the two time-varying predictors Job Demands 
and Social Support. The first model in Table x.3 models the random part using a saturated 
model. Models 2–3 use the compound symmetry and the lag-1 autocorrelation model for the 
covariance structure. Model 4 derives the structure for the covariances from a random intercept 
plus a random slope for Job Demands. Model 5 will be described in section x.4.2. The table 
reports for each model the number of parameters estimated, and the overall fit statistics 
deviance, AIC, BIC based on the number of subjects, and BIC based on the total number of 
measurements (subjects×occasions). Full Maximum Likelihood estimation is used, so both 
regression coefficients and (co)variances enter the likelihood function. 
 
 
All models are nested within the saturated model, so they can be tested against that model 
using the deviance difference test. The difference between the deviances of the models is a 
chi-square variate with degrees of freedom equal to the difference in number of astimated 
parameters. The column p in Table x.3 presents the p-value from the test of the model against 
the saturated model. Model 2 and 3 differ significantly from the saturated model, which 
means that they do not replicate the covariances well. Model four is significantly different 
from the saturated model at the 5% alpha level, but not at the 1% level. It does a better job at 
replicating the covariances than model two and three. 

It is clear that if one explores these data from a covariance structure perspective, the 
likely choice is for a model with all predictors fixed and a lag-1 autocorrelation. From a 
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random slopes perspective, the likely choice is for a model with a random intercept plus a 
random slope for the variable Job Demands. The fit indices point towards the random slope 
model. 
 
x.4.2 Combined Models 
 
The choice for a particular approach is not an either/or choice, the two approaches can be 
combined in a single model. The last row in Table x.3 presents the results for a model where 
the intercept and the slope for Job Demands have variation, and the remaining structure over 
time is modeled using a lag-1 autocorrelation. All fit indices prefer this model to the simpler 
Intercept + Slope model. Not all combinations of regression model and covariance structure 
are possible. For instance, a saturated model for the covariances over time leaves no place for 
intercept or slope variance. Highly restricted models such as compound symmetry or lag-1 
autocorrelation, which both estimate only two parameters for the (co)variances, leave much 
room for varying slopes. 
 The last row in Table x.3 presents the fit information of a model that combines the 
random intercept plus slope model with a lag-1 autocorrelation structure. It fits very well, the 
p-value is 1.00, meaning that the model does not significantly differ from the saturated 
model. That is impressive, especially since the saturated model contains 59 parameters, and 
the combined model only nine. Since model four and five are also nested (model four is 
model five minus the autocorrelation part) they can also be compared using the formal test. 
The chi-square is 59.6, with 2 degrees of freedom, and the difference between the two models 
is clearly significant. Thus, model five a significant improvement on model four. 
 To assess the impact of various choices for the covariance structure on the fixed 
estimates, Table x.4 presents the parameter estimates for the fixed part, and for the most 
important parameters in the random part. The values within brackets are the standard errors. 
These are given for the saturated model, the autocorrelation model, the random intercept plus 
slope model, and the combined random intercept and slope plus  
 
 

----- insert table x.4 about here ----- 
 
Although all corresponding estimates are similar, they are clearly not identical. The combined 
model could be improved by removing the evidently nonsignificant covariance between the 
intercept and the slope. If that is done, the deviance difference test for the variance of the 
intercept is significant (χ2 = 10.08, df=1, p=0.002). The associated changes in parameter 
estimates are very small, so they are not reported here. The varying coefficient for Job 
Demands can in principle be explained by adding a cross-level interaction of Job Demands 
with Trait Anxiety to the model. However, the coefficient for this interaction is not 
significant, and the variance of the Job Demands slopes remains unexplained. 
 The autocorrelation in the combined model is a conditional autocorrelation (Singer & 
Willet, 2003), conditional on the predictors in the model and the random effects of the 
intercept and of Job Demands. In the autocorrelation model, without the random intercept and 
slopes, the autocorrelation is much higher. Since there are no random effects in this model, 
the structure of the covariances over time must completely be explained by the 
autocorrelation function. In the combined model, part of the covariance structure is explained 
by the random effects in the model, which leaves a lower autocorrelation. 
 The interpretation of the model results for the combined model is the following. The 
time-varying predictors Job Demands and Social Support are significant. On days that Job 
Demands are high, a higher state anxiety is reported. On days that social support is high, a 
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lower state anxiety is reported. Subjects who score high on trait anxiety report in general a 
higher state anxiety as well. The slope variation for Job Demands shows that some subjects 
are more sensitive to changes in Job Demands than others. There is a medium size correlation 
between the residuals for state anxiety from one day to the next, which means that state 
anxiety has a certain amount of short-term stability over time. 
 
 

x.5 Conclusions 
 
This chapter makes a distinction between longitudinal data where indicators for time are 
predictors in the model, to model growth or decline over time, and models where time is not a 
predictor, and time-varying covariates are used to model change over time. When time or 
other time-varying covariates have varying regression slopes, the dependency structure in the 
covariances over time is modeled implicitly, as a consequence of the estimated parameters in 
the random part. If there are no varying coefficients, the data must be modeled otherwise.
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Figure captions 
 
Figure x.1. Path diagram corresponding to growth model with four occasions 
 
Figure x.2. SEM diagram corresponding to Manova on 10 consecutive anxiety measures 
 
Figure x.3. Path diagram for autoregressive model 
 


