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Abstract

Multilevel modeling in general concerns models for relationships between variables defined at different
levels of a hierarchical data set, which is often viewed as a multistage sample from a hierarchically
structured population. Common applications are individuals within groups, repeated measures within
individuals, longitudinal modeling, and cluster randomized trials. This chapter treats the multilevel
regression model, which is a direct extension of single-level multiple regression, and multilevel
structural equation models, which includes multilevel path and factor analysis. Multilevel analysis was
originally intended for continuous normally distributed data. This chapter refers to recent extensions
to non-normal data but does not treat these in detail. The end of the chapter presents some statistical
issues such as assumptions, sample sizes, and applications to data that are not completely nested.
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Introduction

Social and behavioral research often concerns
research problems that investigate the relationships
between individuals and the larger context in which
they live, such as families, schools, or neighbor-
hoods. Similarly, longitudinal data are becoming
more common, where individuals are followed
for a period of time to observe and model their
development. Multilevel models and software have
been introduced to combine in a statistically sound
way variables defined at the individual and the
group level. These models were discussed in the
educational and sociological research literature in
the 1980s and described in monographs in the
early 90s by, for example, Bryk and Raudenbush
(1992) and Goldstein (1987). For an exhaustive
review of the older multilevel literature, see Hiit-
tner and Van den Eeden (1995). The monographs
by Bryk and Raudenbush and by Goldstein are

mathematically oriented; more introductory level
handbooks appeared later—for example, Bickel
(2007), Hox (2002), and Snijders and Bosker
(1999).

Although multilevel modeling was initially dis-
cussed mostly in the context of individuals within
groups, the model was rapidly extended to longitu-
dinal and repeated measures data. The translation
is simple—one just needs to replace individuals
within groups with measurement occasions within
individuals, and restructure the data from the con-
ventional multivariate (“wide”) structure to a stacked
(“long”) multilevel structure. This application was
already described by Goldstein (1987). As it turns
out, multilevel modeling of longitudinal data is
a very powerful approach, because it enables a
very flexible treatment of the metric of time, and
it deals naturally with incomplete data resulting
from incidental dropout and panel attrition. Just



as multilevel analysis of individuals within groups
does not assume that the group sizes are equal,
multilevel analysis of repeated measures within indi-
viduals does not assume that all individuals have the
same number of measures.

A more recent development is the introduction
of multilevel structural equation modeling (SEM).
Structural equation models are more flexible than
(multilevel) regression models. Regression models
assume predictor variables that are perfectly reliable,
which is unrealistic. Structural equation models do
not make that assumption, because they can include
a measurement model for the predictor or out-
come variables. In addition, they can model more
complicated structures, such as indirect effects in a
mediation analysis.

This chapter treats the multilevel regression
model as applied to individuals within groups and
as applied to measurement occasions within indi-
viduals. It follows with a description of (multilevel)
SEM for measurement occasions within individual
and for mediation analysis. Next, some issues are
discussed concerning assumptions and sample sizes.
The chapter ends with a brief discussion.

Multilevel Regression Modeling:
Introduction and Typical Applications
Individuals Within Groups

The multilevel regression model for individu-
als within groups is often represented as a series
of regression equations. For example, assume that
we have data from pupils in classes. On the pupil
level, we have an outcome variable, “pupil popular-
ity.” We have two explanatory variables on the pupil
level, pupil gender (0 = boy, 1 = girl) and pupil
extraversion, and one class level explanatory vari-
able teacher experience (in years). There are data on
2,000 pupils in 100 classes, so the average class size
is 20 pupils. The data are described and analyzed in
more detail in Hox (2010) and available on the web
(www.joophox.net).

The lowest level regression equation predicts the
outcome variable as follows:

popu[an’lyij = ,30]‘ + ,Bljgmdf”’zj

+ Bojextraversion;; + e;;. (1)

In this regression equation, Bo; is the intercept,
B1j is the regression slope for the dichotomous
explanatory variable gender, fBj; is the regres-
sion slope for the continuous explanatory variable
extraversion, and ejj is the usual residual error term.

The subscript j is for the classes (j = 1.../) and the
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subscript 7 is for individual pupils ( = 1...7;). The
major difference with the usual regression model is
that we assume that each class has a different inter-
cept Bo;, and different slopes B1; and By;. This is
indicated in the equation by attaching a subscript
j to the regression coefficients. The residual errors
¢;; are assumed to have a normal distribution with
a mean of zero and some variance that is estimated.
This chapter uses 02 to denote the variance of the
lowest level residual errors.

Because the regression coefficients of the
individual-level variables vary across classes, the next
step is to explain this variation using explanatory
variables at the second or class level:

Boj = voo + vo1 Teacher Exp; + up;,  (2)
and

By = yi0 + yi1 leacher Exp; + u;

Baj = va0 + v21 Teacher Expj + uij.  (3)

Equation 2 predicts the average popularity in
a class (the intercept Bo;) by the teacher’s experi-
ence. The equations under Equation 3 state that
the relationship (as expressed by the slope coeffi-
cients f8;) between the popularity and the gender
and extraversion of the pupil depends on the amount
of experience of the teacher. The amount of experi-
ence of the teacher acts as a moderator variable for
the relationship between popularity and gender or
extraversion; this relationship varies according to the
value of the moderator variable.

The u-terms uoj, u1j, and uy; are residual error
terms at the class level. These are assumed to have
means of 0 and to be independent from the residual

errors ¢;; at the individual (pupil) level. The variance
2

upy’
the variances of the residual errors #1; and uy; are

of the residual errors ug; is specified as o, , and

specified as 0‘31 and 0‘52. The covariances between
2 2

> Cugp?
and 01421 , and are generally 7ot assumed to be 0.

Using standard multilevel regression software, we

the residual error terms are denoted by o

can estimate a series of models. Table 14.1 presents
three models of increasing complexity. The first
model is the intercept-only model, which allows
us to calculate the intraclass correlation p as p =
o2
O+’
relation is 0.36, which is relatively large. Model 2
adds the predictor variables, with a random slope
for pupil extraversion (the variance of the slope for
pupil gender is 0 and therefore omitted from the
model). The last model adds the cross-level inter-

action to explain the variation of the extraversion

For the popularity data, the intraclass cor-



Table 14.1. Models for the Pupil Popularity Data

Model: Intercept-only Main effects ~ With interaction
Fixed part Coefficient (SE) ~ Coefficient (SE)  Coefficient (SE)
Intercept 5.08(0.09) 0.74(0.20)  —1.21(0.27)
Pupil gender 1.25(0.04) 1.24(0.04)
Pupil extraversion 0.45(0.02) 0.80(0.04)
Teacher experience 0.09(0.01) 0.23(0.02)
Extra*T.exp —0.03(0.003)
Random part

o? 1.22(0.04) 0.55(0.02) 0.55(0.02)
o2 0.69(0.11) 1.28(0.28) 0.45(0.16)
o2, 0.03(0.008) 0.005(0.004)
Oy —0.18(0.05)  —0.03(0.02)
Deviance 6327.5 4812.8 4747.6

slope; after this interaction is included, the variance
of this slope is no longer significant, as determined
by a likelihood ratio test.

The interpretation of the main effects model (sec-
ond model) in Table 14.1 is that girls and more
extraverted pupils tend to be more popular. The
significant variance for the slope of extraversion
(052 in the random part) indicates that the effect
of extraversion varies across classes. The interaction
model (model 3) models this variance with an inter-
action between extraversion and teacher experience.
The negative sign of the regression coefficient for
this interaction indicates that the effect of extraver-
sion on popularity is smaller with more experienced
teachers. The interpretation of direct effects in the
presence of a significant interaction is delicate; in
general, it is recommended to support such interac-
tions by drawing a graph using the observed range
of the interacting variables (Aiken & West, 1991;
Hox, 2010).

When predictor variables are added to the model,
the resulting decrease in the residual error variance is
often interpreted as explained variance. This inter-
pretation is not quite correct, as Snijders and Bosker
(1999) have shown. Table 14.1 illustrates this: when
the predictors are added, the unexplained variance
at the second level actually appears to increase.
In this specific instance, this is the result of the
changes in the random part, where a slope variance
is added. This completely changes the model. When
the random part is left unaltered, adding predictors

generally results in decreasing residual error vari-
ances, and these are often interpreted as explained
variance (Raudenbush & Bryk, 2002). Neverthe-
less, negative explained variances can and do occur,
and interpreting decrease in variance as explained
variance is at best an approximation (Hox, 2010).

Measurement Occasions Within Individuals

Longitudinal data, or repeated measures data, can
be viewed as multilevel data with repeated measure-
ments nested within individuals. Multilevel analysis
of repeated measures is often applied to data from
large-scale panel surveys. In addition, it can also be
a valuable analysis tool in a variety of experimental
designs—for example, intervention studies with an
immediate and a later final follow-up measurement,
where incomplete data resulting from attrition are
common.

The example is a data file compiled by Curran
(1997) from a large longitudinal data set. The data
are a sample of 405 children who were within the
first 2 years of entry to elementary school. The data
consist of four repeated measures of both the child’s
antisocial behavior and the child’s reading recog-
nition skills. In addition, at the first measurement
occasion, measures were collected of emotional sup-
port and cognitive stimulation provided by the
mother. Other variables are the child’s gender and
age and the mother’s age at the first measurement
occasion. There was an appreciable amount of panel
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dropout: all 405 children and mothers were inter-
viewed at measurement occasion 1, but on the three
subsequent occasions the sample sizes were 374,
297, and 294. Only 221 cases were interviewed at
all four occasions. These data have been analyzed
extensively in Hox (2010) and can also be obtained
from the web (www.joophox.net).

The multilevel regression model for longitudinal
dataisastraightforward application of the multilevel
regression model described earlier. It is also written
as a sequence of models for each level. At the lowest,
the repeated measures level, we have:

Yi=mo; +m; Ty + 72 X + €45 (4)

where V}; is the outcome variable for subject 7 at mea-
surement occasion ¢, 7y is a time indicator for the
measurement occasion, and X; is some other time-
varying predictor variable. The regression intercept
and slopes are commonly denoted by 7}, so at the
individual level we can again use B for the regression
coefficients. In our example, the outcome variable
could be reading skill, the time indicator could be 0,
..., 3 for the four measurement occasions, and the
time-varying predictor could be antisocial behavior.
The intercept and slopes in Equation 4 are assumed
to vary across individuals. Justas in two-level models
for individuals within groups, this variation can be
explained by adding individual level predictors and

cross-level interaction effects:

0; = Boo + Bo1Zi + uoi
w1 = Bro + BuiZi + m; (5)
i = Bao + B Zi + uzi

By substitution, we get the single equation
model:

Yii = Boo + Bro T + Broxsi + BorZi
+ B TuZ; + B xsiZi
+ur; Ty + upi X + toi + €1 (0)

Table 14.2 presents a sequence of models for
these data, predicting reading skill from the available
predictor variables, omitting non-significant effects.

The interpretation of Table 14.2 is that there is an
increase in reading skill over time. Relatively older
children and children that are cognitively stimulated
have better reading skill. Children vary in the speed
at which reading skill increases, which is partially
explained by interactions with their age and cogni-
tive stimulation. Relatively older children increase
their reading skill less fast, and children who are
cognitively stimulated increase faster.
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A comparison of the intercept-only model with
the model that includes measurement occasion
shows the anomaly mentioned earlier; adding occa-
sion results in an increase of the second level vari-
ance, hence in negative explained variance. The
reason was also mentioned earlier, interpreting
changes in the variance terms as explained vari-
ance is questionable. The variance decomposition in
the intercept-only model depends on the assump-
tion of random sampling at all available levels. In
longitudinal panel designs, the sampling at the low-
est level follows a very specific scheme, and as a
result the occasion level variance is overestimated
and the individual level variance is underestimated
(for details, see Hox, 2010). The pragmatic approach
is to use as a null-model a model with measurement
occasion properly specified, which in Table 14.2 is
the model that includes occasion with a random
slope.

Two important advantages of multilevel model-
ing of longitudinal data should be mentioned. As
is clear from the reading skill example, incomplete
data resulting from missed measurement occasions
are no special problem. In the stacked (“long”)
data file, the rows corresponding to missed occa-
sions are simply left out, and the analysis proceeds
as usual. Given the large fraction of missing data
in these data, this is a major advantage. An even
more important advantage is that an analysis using
repeated measures MANOVA, with listwise dele-
tion of incomplete cases, assumes that missing data
are missing completely at random (MCAR), an
unlikely assumption. Multilevel analysis assumes
missing at random (MAR), which is a much weaker
assumption (see chapter 27, this volume?).

The second advantage of multilevel modeling for
longitudinal data is the flexible treatment of time.
Because time is included in the model as a time-
varying predictor, we can attempt to specify the
metric of time in ways that are more accurate than
counting the measurement occasion. In our exam-
ple, it appears theoretically sounder to use the actual
age of the child at each measurement occasion as the
time variable. It is more accurate, because it reflects
real observed age differences rather than just mea-
surement occasions, and in contrast to measurement
occasion, it does have a theoretical interpretation.
Table 14.3 highlights the differences between these
two metrics of time.

When we use the real age rather than the mea-
surement occasions, which are spaced 2 years apart,
we halve the scale of the time variable. Thus, for the
age slope, we obtain values that are precisely half the



Table 14.2. Multilevel Models for Longitudinal Data Reading Skill

Model Intercept-only ~ Add occasion ~ Occasion varying

Fixed part

Predictor Coefficient (SE)  Coefficient (SE)  Coefficient (SE)  Coefficient (SE)
Intercept 4.11(0.05) 2.70(0.05) 2.70(0.05) —3.28(0.42)
Occasion 1.10(0.02) 1.12(0.02) 2.23(0.24)
Child age 0.80(0.06)
Cogn. Stim. 0.05(0.01)
Occasion*Child age —0.19(0.03)
Occasion*Cogn. Stim. 0.02(0.01)

Random part

ol 2.39(0.11) 0.46(0.02) 0.35(0.02) 0.35(0.02)
o2 0.30(0.08) 0.78(0.07) 0.57(0.06) 0.30(0.04)
o2 0.07(0.01) 0.06(0.01)
001 0.06(0.02) 0.11(0.02)
ru01 0.29(0.13) 0.86(0.18)
Deviance 5051.8 3477.1 3371.8 3127.9

Table 14.3. Comparing Occasion and Child’s Age for Longitudinal Data Reading Skill

Model

Fixed part Occasion Occasion varying Child age Child age varying
Predictor Coefficient (SE)  Coefficient (SE)  Coefficient (SE)  Coefficient (SE)
Intercept 2.70(0.05) 2.70 (0.05) 2.19 (0.05) 2.16(0.04)
Occasion 1.10(0.02) 1.12 (0.02) - -

Child age - — 0.55 (0.01) 0.56(0.01)
Cogn. Stim.

Occasion*Child age

Occasion*Cogn. Stim.

Random part

o? 0.46(0.02) 0.35 (0.02) 0.45 (0.02) 0.36(0.02)
ol 0.78(0.07) 0.57 (0.06) 0.65 (0.06) 0.17(0.05)
o2 0.07 (0.01) 0.02(0.003)
0101 0.06 (0.02) 0.05(0.001)
7401 0.29 (0.13) 0.88(0.30)
Deviance 3477.1 3371.8 3413.9 3226.8
AIC 3485.1 3383.8 3421.9 3238.8




values of the occasion slope. But the child level vari-
ances are quite different. When models are nested,
meaning that we can proceed from one model to the
next by adding (or deleting) terms, the model change
can be tested using a test on the deviances of the
models. However, replacing the predictor variable
measurement occasion by actual age does not lead to
nested models. Provided the dependent variable and
the number of cases remain the same (which implies
no additional missing values induced by using age),
we can compare such models using the Akaike Infor-
mation Criterion (AIC). The AIC (Akaike, 1987) is
calculated as the deviance minus twice the number
of estimated parameters; models with a lower AIC
are considered to be better. Thus, the values of the
AIC in Table 14.3 suggest that using the actual age
results in better models. For a general discussion of
these issues, see Willett and Singer (2003). A more
detailed analysis of the reading skill data using child
age as the metric of time can be found in Hox (2010),
which also discusses the AIC and related indices in
more detail.

Multilevel Structural Equation Modeling:
Introduction and Typical Applications

Structural equation models are a very flexible
family of models that allow estimation of relation-
ships between observed and latent variables, direct
and indirect effects, and assessment of the fit of
the overall model. Conventional SEM software can
be tricked to estimate two-level models by viewing
the two levels as two groups and using the multi-
group option of conventional software (Muthén,
1994). The approach outlined by Muthén is a lim-
ited information method. Mehta and Neale (2005)
have described how general multilevel models can
be incorporated in SEM, and how these models
can be estimated by conventional SEM software.
Using conventional SEM software requires incredi-
bly complicated set-ups, but recent versions of most
SEM software incorporates handle these complica-
tions internally and have special multilevel features
in their command language, which make it easier to
specify multilevel models.

Latent Curve Modeling

An interesting structural equation model for
panel data is the latent curve model (LCM), some-
times referred to as the latent growth model (LGM).
In the LCM, the measurement occasions are defined
by the factor loadings in the measurement model of
the latent intercept and slope factors. Figure 14.1
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Figure 14.1 Path diagram for the intercept + slope model for
reading skill.

shows the path diagram of a simple LCM for the
reading skill data. The loadings of the intercept fac-
tor are all constrained to 1, and the loadings of the
slope factor are constrained to 0, 1, 2, and 3, succes-
sively. Thus, the loadings of the slope factor specify
the four measurement occasions. The means of the
intercept and slope factors are equal to the estimates
of the intercept and slope in the corresponding mul-
tilevel model, and the variances are equal to the
variances of the intercept and slope in multilevel
regression.

It can be shown that the LCM and the multilevel
regression model for longitudinal data are identical.
That does not mean that there are no differences
between the two approaches. For example, in SEM,
it is trivial to use the intercept and slope factors in a
GCM as predictors of some distant outcome. This
is very difficult in a multilevel regression model. On
the other hand, in multilevel regression software, it
is trivial to extend the model with additional levels,
whereas most current multilevel SEM software can
deal with only two levels. In addition, in multilevel
regression, the time variable is a predictor variable,
which makes it easy to use the actual child ages rather
than the measurement occasions (recent versions of
SEM software like Mplus and Mx allow varying
time-points as well but still have issues with widely
varying numbers of measurement occasions). How-
ever, as MacCallum et al. have phrased it: “A wide
range of models have equivalent representations in
either framework” (MacCallum, Kim, Malarkey, &
Kiecolt-Glaser, 1997, p. 246). The most impor-
tant conclusion to draw from the comparison of
GCM using a multilevel versus a structural equation
approach is that these models are fundamentally the
same but generally have a different representation
in dedicated multilevel or SEM software. Hence,
differences between these two approaches are more
apparent than real (Bollen & Curran, 2006).

When the model presented in Figure 14.1 is esti-
mated using conventional SEM software, the output
highlights one important difference between the
multilevel regression and the SEM approach. The



SEM analysis produces the same estimates as the
multilevel regression, but it also produces a global
model test and several goodness-of-fit indices. The
global chi-square test rejects the model ( x>(5) =
174.6, p < 0.001), and the fitindices indicate a very
bad fit Comparative Fit Index (CFI) = 0.78, Root
Mean Square Error of Approximation (RMSEA)
= 0.29 [95% CI 0.25-0.33]). This is important
information that the multilevel regression approach
does not provide. Further exploration of the model
shows that the latent curve is decidedly nonlinear.
If the slope loadings for readings 3 and 4 are esti-
mated freely, then they are estimated as 1.6 and 2.1,
respectively, which is quite different from the lin-
ear constraints of 2.0 and 3.0. The resulting model
shows an excellent fit (x%(3) = 4.3, p = 0.23, CFI
= 1.00, RMSEA = 0.03 [95% CI 0.00-0.11]). A
more detailed multilevel regression analysis of these
data in Hox (2010), using the actual child ages, also
finds a strongly nonlinear curve.

Multilevel Structural Equation Modeling

The LCM is a real multilevel model, where the
latent factors represent the random regression coef-
ficients of the multilevel regression model, but it
can be specified as a conventional single level struc-
tural model. Multilevel structural equation models
in general need the aforementioned extensions in
the SEM software to be estimated easily. Multilevel
structural equation modeling assumes sampling at
the individual and the group level, with both within-
group (individual level) and between-group (group
level) variation and covariation. In multilevel regres-
sion modeling, there is one dependent variable and
several independent variables, with independent
variables at both the individual and group level.
At the group level, the multilevel regression model
includes random regression coefficients and error
terms. In the multilevel SEM, the random intercepts
are second-level latent variables, capturing the vari-
ation in the means of the observed individual level
variables. Some of the group level variables may be
random slopes, drawn from the first level model, but
other group level variables may be variables defined
only at the group level, such as group size.

Mehta and Neale (2005) explain how multilevel
SEM can be incorporated into conventional SEM.
By viewing groups as observations, and individuals
within groups as variables, they show that models
for multilevel data can be specified in the full-
information SEM framework. Unbalanced data—
that is, unequal numbers of individuals within
groups—are handled the same way as incomplete

data in modern SEM estimation methods. So, in
theory, multilevel SEM can be specified in any SEM
package that supports FIML estimation for incom-
plete data. In practice, specialized software routines
are used that take advantage of specific structures
of multilevel data to achieve efficient computations
and good convergence of the estimates. Extensions
of this approach include extensions for categorical
and ordinal data, incomplete data, and adding more
levels. These are described in detail by Skrondal and
Rabe-Hesketh (2004).

In two-level data, the observed individual level
variables are modeled by:

Yw = Awny +ew

mp=pm—+ Agng+ €p, 7)

where pp are the random intercepts for the vari-
ables y 7 that vary across groups. The first equation
models the within-groups variation, and the second
equation models the between-groups variation and
the group level means. By combining the within and
between equations, we obtain

Yi=n+Awny +Apnp+esgt+ew. (8)

In Equation 8, w is the vector of group level
means, Ay is the factor matrix at the within level,
Ap is the factor matrix at the between level, and
ew and &p are the residual errors at the within
and the between level. With the exception of the
notation, the structure of Equation 8 follows that
of a random intercept regression model, with fixed
regression coefficients (loadings) in the factor matri-
ces A and a level-one and level-two error term. By
allowing group level variation in the factor loadings,
we can generalize this to a random coefficient model.
The model in Equation 8 is a two-level factor model,
by adding structural relationships between the latent
factors at either level, we obtain a two-level SEM.

Multilevel SEMs are often estimated in separate
steps. First, the intraclass correlations of the variables
are inspected. If they are all small—for example,
smaller than 0.05—the between-group variance is
small and there may be no need for a complex
group level model. The dependency in the data can
be dealt with using standard analysis methods for
cluster samples. If the between-group variances are
considerable, then an investigation of the between
structure is warranted. In general, because the sam-
plesize at the individual level is generally much larger
than the sample size at the group level, the analysis
is started with an analysis of the within structure.
Standard analysis methods for clustered samples can
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Figure 14.2 Multilevel model for group level intervention.

be used here, such as the complex sample analy-
sis methods used in survey research (cf. de Leeuw,
Hox, & Dillman, 2008), which are implemented
in, for example, Mplus. Next, the between struc-
ture is investigated in a two-level model with the
within-structure fully specified.

Figure 14.2 depicts a two-level model that con-
tains both observed and talent variables at both
levels. It represents a model based on the theory of
reasoned action (Ajzen & Fishbein, 1980) that pre-
dicts behavior from intention toward that behavior,
and intention is in turn predicted from attitudes and
social norms concerning that behavior. The attitudes
and norms are latent factors, each indicated by three
observed variables. In general, unless the intraclass
correlation is 0, all observed variables exist at both
the individual and the group level. Note that the
variables that are observed variables at the individ-
ual level are latent variables at the group level; these
latent variables represent the group-level variation of
the intercepts. There is one variable that exists only
at the group level. The variable expcon represents
some experimental intervention at the group level,
aimed at changing the attitude toward the behavior.
If the groups are assigned at random to the inter-
vention or the control condition, then this example
represents a group randomized trial.

Example data were generated directly from the
model, for 100 groups of 10 subjects each and intr-
aclass correlations of around 0.10, which is relatively
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Table 14.4. Unstandardized
Factor Loadings (Standard
Errors) for Attitude and Norms

Ardel  1.00* -
Attitl 1.00(0.06) —
Attitl 0.98(0.05) —
Norm1 - 1.00*
Norm?2 — 0.98(0.05)
Norm3 — 0.98(0.05)

Note: * indicates constrained for iden-
tification. Correlation between factors
estimated as 0.50 (within) and 0.69
(between).

high but not unusual. All variables are continuous;
to simplify the modeling the intervention variable is
ordered categorical with five categories.

The model depicted in Figure 14.2 is estimated
using Mplus (Muthén & Muthén, 1998-2010).
The program reports the intraclass correlations for
all observed variables; these range from 0.15 to 0.22.
Thus, multilevel modeling of these data is justi-
fied. The fit of the model is excellent (x%(44) =
26.7, p = 0.98, CFI = 1.00, RMSEA = 0.00),
which is unsurprising because the example data were
generated from this model.

The model illustrates some issues that occur
more generally in two-level SEM. First, we have
a measurement model that specifies how attitude
and norms are measured by the observed variables.
Because the measurement model is the same at both
levels, the question arises if we can impose equal-
ity constraints on the factor loadings across the two
levels. If we impose these four constraints, the chi-
square increases by 3.748, which with four degrees
of freedom is not significant (p = 0.44). Table 14.4
presents the unstandardized factor loadings after
imposing the equality constraints. Because we have
established that there is measurement equivalence
across the two levels, we can proceed to calculate
the intraclass correlations for the two latent factors.
If we specify a model without the intervention vari-
able, then the intraclass correlation for attitude is
0.20 and for norms 0.16. The intraclass correlation
for attitude is inflated because part of the variance
in attitude is caused by the group-level intervention.
If we analyze the model including the intervention
variable, then the intraclass correlation for attitude is
estimated as 0.17; this could be interpreted as a par-
tial intraclass correlation, disregarding the variance
in attitude caused by the intervention.



Table 14.5. Direct and Indirect Paths from
Intervention to Behavior, Group Level

Dependent  Independent (mediating) variables
path coefficient (standard error)
Intervention  Attitude  Intention
Attitude 0.52 (0.12) - -
Intention 0.34 (0.08) 0.64 (0.09) -
Behavior 0.25 (0.07)  0.49 (0.08) 0.75 (0.06)

In addition to the inclusion of latent variables,
SEM allows estimating and testing indirect effects.
In our example, the effect of the intervention on the
behavior is mediated at the group level by attitude
and intention. Table 14.5 shows the standardized
direct and indirect effects of the paths leading from
the intervention to behavior, at the group (between)
level.

The group-level explained variances are 0.27 for
attitude, 0.74 for intention, and 0.57 for behav-
ior. Predictably, the effect of the intervention
becomes smaller when the chain of mediating vari-
ables becomes longer. The explained variance of the
intervention on the attitude is 0.27, which trans-
lates to a correlation of 0.52—in Cohen’s (1988)
terms, a large effect size. In this example, the medi-
ation is entirely at the group level. It is possible
to model mediation chains where the group-level
intervention affects individual-level variables (latent
or observed) that in turn affect group or individ-
ual level outcomes. Especially when random slopes
are involved, multilevel mediation is a complex phe-
nomenon, and I refer to MacKinnon (2008) for a
thorough discussion of the details.

Methodological and Statistical Issues
Assumptions

Multilevel regression and SEM make the same
assumptions as their single-level counterparts. So,
multilevel regression analysis assumes perfectly mea-
sured predictor variables, linearity of relationships,
normal residual errors, homoscedasticity, and inde-
pendence conditional on the grouping variables in
the model. In addition, it assumes that the resid-
ual errors at the separate levels are independent.
Structural equation modeling can incorporate a
measurement model; thus, there is no assumption
that variables are measured without measurement
error, but otherwise the assumptions are much
the same.

Investigating potential violations of assumptions
is more complicated in multilevel models than in
their single-level counterparts. For example, if there
are random slopes in the model, then at the group
level there is a set of residuals that are generally
assumed to have a multivariate normal distribution.
Investigating the normality assumption here implies
investigating all residuals. In addition, the model
itself is more complex. For example, Bauer and Cai
(2009) have shown that if a nonlinear effect is not
modeled as such, then this misspecification may
show up as an entirely spurious variance parame-
ter for a slope or a spurious cross-level interaction
effect. Wright (1997) has shown that in multilevel
logistic regression, sparse data resulting from skewed
distributions or small samples may result in spuri-
ous overdispersion (a variance larger than implied by
the underlying binomial distribution). So, investi-
gating assumptions is both more difficult and more
important in multilevel models. Specialized multi-
level software such as HLM and MLwiN incorporate
many procedures for investigating assumptions that
are specific to multilevel regression models, but more
general software like SAS, SPSS, or Mplus for mul-
tilevel SEM do not incorporate such features and
rely completely on the ingenuity of the researcher to
devise diagnostic checks.

Sample Size

In multilevel modeling, the most important lim-
itation on sample size is generally the second or
higher level, because the higher level sample sizes
are usually smaller than the lower level sample sizes.
Eliason (1993) recommends a minimum sample
size of 60 when maximum likelihood estimation
is used. In multilevel modeling, this would apply
to the highest level. Maas and Hox (2005) have
found that in multilevel regression modeling, a high-
est level sample size as low as 20 may be sufficient
for accurate estimation, provided that the interest
is in the regression coefficients and their standard
errors. If the interest is in the variance estimates, then
the higher level sample sizes must be much larger,
and Maas and Hox have recommended at least 100
groups (although 50 groups may suffice for small
models). Multilevel SEM are fundamentally based
on the within-group and between-group covariance
matrices, and hence it is not surprising that the rec-
ommendation for the accurate estimation of higher
level variances in multilevel regression carries over
to SEM: at least 100 groups are recommended, but
in small models 50 groups may suffice (Hox, Maas,
& Brinkhuis, 2010).



Unequal sample sizes at any of the levels are not a
problem, as the model does not assume equal sam-
ple sizes at all. Missing values resulting from missing
occasions or panel dropout can be dealt with eas-
ily in longitudinal models. However, incomplete
data at the higher level are more difficult to han-
dle. Structural equation software is sometimes able
to analyze incomplete data directly using full infor-
mation maximum likelihood procedures, but most
multilevel software does not have such provisions.
Multiple imputation is an option, but the prob-
lem is that the imputation model must also be a
multilevel model. Van Buuren (2011) has discussed
incomplete multilevel data in detail.

Small sample sizes at the lowest level do not
pose a problem by themselves. For example, mul-
tilevel models have proven valuable in analysis of
dyadic data, such as couples or twins (Atkins, 2005).
Even groups of size 1 are fine, provided other
groups are larger. However, small groups present
some limitations, especially to the complexity of the
within-groups (individual level) model. A model
with a random intercept and one random slope is
just identified, and more complex models cannot be
estimated (Newsom, 2002). For a recent review of

multilevel models for dyadic data, see Kenny and
Kashy (2011).

Further Important Issues

In multilevel modeling, predictor variables are
sometimes centered on some value. Centering on
a single value, usually the grand mean of the pre-
dictor variable, poses no special problems. It facili-
tates estimation—especially when multicollinearity
is present—and makes the interpretation of interac-
tions easier. Centering predictor variables on their
respective group means is different. Group mean
centering totally changes the meaning of the model
and should be used with caution. In particular,
group mean centering removes all information about
the group means from the model. Adding the group
means as predictor variables to the model solves that
issue, but the resulting model is still fundamen-
tally different from a model that incorporates the
original uncentered predictor variables. Enders and
Tofighi (2006) have discussed these issues in detail
and have provided some guidelines for when group
mean centering is appropriate.

Effect sizes are somewhat problematic in mul-
tilevel models. In general, calculating explained
variance is not different from calculating explained
variance in similar single-level models. However, in
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multilevel modeling, one would want to be able to
establish how much variance is explained at each of
the available levels. This turns out to be problem-
atic. Simply using the reduction in residual variance
when predictor variables are added as suggested in
Raudenbush and Bryk (2002) does not work, as this
procedure can result in impossible values such as
negative explained variances (Hox, 2010; Snijders
& Bosker, 1994). There have been several propos-
als to cope with this problem (Roberts, Monaco,
Stovall, & Foster, 2011; Snijders & Bosker, 1999),
but these tend to be complicated and to have their
own problems. In the end, Hox (2010) has rec-
ommended using the simple method (Raudenbush
& Bryk, 2002), in combination with grand mean-
centered predictors, and interpreting the result-
ing values as indicative, rather than mathematical
truth.

In regression and SEM, the interest is often
mostly on the fixed coefficients—that is, the regres-
sion coefficients, factor loadings, and path coeffi-
cients. Their significance can be tested using their
standard errors. In latent growth models and in
multilevel SEM, there is often considerable sub-
stantive interest in the variance components as
well—for example, in testing whether the higher
level variances are significant. Testing variances using
the standard error is generally not a very accurate
approach, because variances do not have a normal
distribution. For significance testing, the recom-
mended method is comparing a model that includes
the variance component with a model that does not
include it, using a likelihood ratio test or the equiva-
lent deviance difference test (cf. Berkhof & Snijders,
2001). Establishing correct confidence intervals for
variance components is possible using multilevel
bootstrap methods (Goldstein, 2011) or Baesian
approaches (Hamaker & Klugkist, 2011).

The multilevel regression and the multilevel SEM
were originally developed for continuous and (mul-
tivariate) normal variables. Both have been extended
to include non-normal variables, such as dichoto-
mous, ordered categorical, or count variables. With
such variables, estimation problems tend to occur.
For multilevel logistic regression, estimation proce-
dures have been developed based on Taylor series
linearization of the nonlinear likelihood. These
methods are approximate, and in some circum-
stances (such as the combination of small groups
and high intraclass correlations) the approximation
is not very good. Numerical methods that maxi-

mize the correct likelihood are superior (Agresti,
Booth, Hobart, & Caffo, 2000), but they can be



computationally intensive, especially in models that
contain a large number of random effects. For such
models, Bayesian estimation procedures are attrac-
tive. Some general software for multilevel modeling,
such as MLwiN and Mplus, include Bayesian esti-
mation options. General Bayesian modeling soft-
ware such as (Win)BUGS can be used for multilevel
modeling, but these require more complicated set-
ups. For an introduction to Bayesian multilevel
modeling, I refer the reader to Hamaker and Klugk-
ist (2011), and a detailed discussion including set-
ups in BUGS is given by Gelman and Hill (2007).

Conclusion

Multilevel models are increasingly used in a vari-
ety of fields. Initially these models were viewed as a
means to properly analyze hierarchical data, with
individual cases or measures nested within larger
units such as groups. Although such applications still
abound, applications have come to include mod-
els for cross-classified hierarchical data, dyadic data,
network analysis, meta-analysis, and spatial mod-
eling. The common characteristic of these models
is that they contain complex relationships involv-
ing random effects. Multilevel analysis is a tool that
allows great flexibility in the actual modeling, which
is why it is an attractive option in analyzing these
complex models.

Future Directions

As has been noted, multilevel models can be spec-
ified as simple SEM that can be analyzed using
standard structural equation software. In prac-
tice, this leads to model set-ups that are unwieldy,
and recent SEM software has incorporated spe-
cial features to accommodate multilevel models. At

the time of writing, multilevel structural equation
software has practical limitations, such as a limited
number of levels, convergence problems, or long
execution times. As software development contin-
ues, structural equation software will outgrow these
limitations.

A difficult problem in actual research is often
obtaining a large enough sample on the higher lev-
els; the maximum likelihood estimation method
requires a reasonable sample size to be accurate.
Bayesian methods are promising in this respect—
they tend to be more stable with smaller sample sizes
and will always generate parameter values that are
within their proper boundaries. However, Bayesian
methods are still undergoing rapid development,
and standard software lags behind in their imple-
mentation. As standard software (as opposed to
specialized Bayesian software such as WINBUGS)
develops to incorporate Bayesian methods (at the
time of writing already available in the software
MIwiN and Mplus), it is expected that their use
will increase.

A problem that still awaits a good solution is
incomplete multilevel data, including missing data
at the higher levels. In SEM, estimation methods
have been developed that provide parameter esti-
mates based on the incomplete data themselves;
no listwise or pairwise deletion or imputation of
missing values is involved. Estimation methods for
multilevel models generally lack this flexibility. In
addition, multilevel multiple imputation must be
considered to be in its infancy. Given the require-
ment that the imputation model must be at least as
complex as the analysis model, developing proper
procedures for multilevel multiple imputation is a
daunting task.

Glossary of Key terms

Between groups

Model for the structure at the group level. Usual term in two-level SEM to refer to

the group (second) level. As three- and more-level SEM develops, this term is
becoming unclear, and better replaced with a reference to the level of interest (e.g.,

class or school level).

Cross-level

Higher level variables may have a direct effect on the outcome in a multilevel model,

interaction or they may affect the effects of lower level variables on the outcome. This is
generally modeled by an interaction between a higher level and a lower level
predictor variable.
Fixed effect, fixed  Regression coefficients (including factor loadings and path coefficients) that do not
coefhicient vary across higher level units.




Glossary of Key terms (Continued)

Intraclass The estimate of the similarity in the population between individuals belonging to
correlation the same group. Also defined as the proportion of variance (in the population) at
the group level.
Mixed model A model that contains both fixed effects and random effects.

Multilevel model

A model that contains variables defined at different levels of a hierarchically

structured population. Other terms used are hierarchical linear model, mixed
model and random coefficient model. Although these models are not identical, in
practice these terms are often used interchangeably.

Random effect,

Regression coefficients (including factor loadings and path coefficients) that are

random assumed to vary across higher level units. They are generally assumed to have a
coefficient normal distribution with a mean of zero and some variance that is estimated.
Variance Generally used to refer to the higher level variances and covariances of the varying
component coefficients. In multilevel analysis of longitudinal data specific structures are
sometimes assumed for the variances and covariances over time.
Within groups Model for the structure at the lowest level. Usual term in two-level SEM to refer to

the individual (first) level. As three- and more-level SEM develops, this term is
becoming unclear and better replaced with a reference to the level of interest (e.g.,

individual or measurement-occasion level).

An extended glossary to key terms used in multilevel regression modeling is presented by Diez Roux (2002).

Symbols used
By Regression coefficient for variable p varying at the level indicated by ;
Yo Fixed regression coefficient for variable p
b1 Regression coefficient for time or measurement occasion indictor
Uy Residual error term for variable p varying at the level indicated by ;
o2 Variance of residual error u
o? Variance of lowest level residual error e
A Factor matrix, subscript B or W indicates Between/Within level
n Factor score, subscript B or W indicates Between/Within level
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