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The Logistic Model for Dichotomous Data and

Proportions

The models discussed so far assume a continuous dependent variable and a normal error

distribution. If the dependent variable is a scale in which the responses to a large number of

questions are summated to one score, the data generally approximate normality. However, there

are situations in which the assumption of normality is clearly violated. For instance, in cases

where the dependent variable is a single dichotomous variable, both the assumption of

continuous scores and the normality assumption are obviously untrue. If the dependent variable

is a proportion, the problems are less severe, but both the assumptions of continuous scores and

normality are still violated. Also, in both cases, the assumption of homoscedastic errors is

violated.

The classical approach to the problem of non-normally distributed variables and

heteroscedastic errors is to apply a transformation to achieve normality and reduce the

heteroscedasticity, followed by a traditional analysis with ANOVA or multiple regression. To

distinguish this approach with the generalized linear modeling approach explained later, where

the transformation is part of the statistical model, it is often referred to as an empirical

transformation. Some general guidelines for choosing a suitable transformation have been

suggested for situations in which a specific transformation is often successful (e.g., Kirk, 1968;

Mosteller and Tukey, 1977). For proportions some recommended transformations include, for

instance: the arcsine transformation that is given by f(p) = 2 arcsine(√p), the logit or logistic
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transformation f(p) = logit(p) = ln(p/(1-p)), and the probit or inverse Normal transformation

f(p)=Φ-1(p), where Φ-1 is the inverse Normal distribution. Thus, for proportions, we can use the

logit transformation, and use standard regression procedures on the transformed variable:

logit(p)= β0+ β1X1+ β2X2 + ε (6.1)

When the dependent variable is a frequency count of events with a small probability, such as the

number of errors made in a school essay, the data tend to follow a Poisson distribution, which

can often be normalized by taking the square root of the scores: f(x) = √x. When the data are

highly skewed, which is usually the case if, for instance, reaction time is the dependent variable,

a logarithmic transformation is often used: f(x) = ln(x), or the reciprocal transformation: f(x)=1/x.

For reaction times the reciprocal transformation has the nice property that it transforms a variable

with an obvious interpretation: reaction time, into another variable with an equally obvious

interpretation: reaction speed.

Such transformations have the disadvantage that they seem ad hoc, and may encounter

problems in specific situations. For instance, if we model dichotomous data, both the logistic and

the probit transformations break down, because for values 0 and 1 these functions are not

defined. In fact, no transformation can ever transform a dichotomous variable, which takes on

only two values, into any resemblance of a Normal distribution.

6.1 GENERALIZED LINEAR MODELS

The modern approach to the problem of non-normally distributed variables is to include the

necessary transformation and the choice of the appropriate error distribution (not necessarily a

Normal distribution) explicitly in the statistical model. This class of statistical models is called

generalized linear models (McCullagh & Nelder, 1989; Gill, 2000). Generalized linear models

are defined by three components:

1) an outcome variable y with a specific error distribution, that has mean µ,

2) a linear additive regression equation, which predicts an unobserved outcome variable η,
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3) and a link function that links the predicted values for η to the observed values of y by the

function η=f(µ).

If the link function is the identity function (f(x)=x) and the error distribution is normal, the

generalized linear model simplifies to ordinary multiple regression analysis. The ordinary

multiple regression model can be specified as a generalized linear model by stating that:

1) the probability distribution is N(µ,σ²) with mean µ and variance σ²,

2) the linear predictor is the multiple regression equation for η, e.g., η = β0+ β1X1+ β2X2,

3) the link function is the identity function given by η=f(µ)=µ,

(cf. Aittkin, Francis, Anderson & Hinde, 1989, chap. 2). This is nearly the same as writing the

normal regression equation as (y +ε ) = β0+ β1X1+ β2X2 with ε ~ N(0,σ²). The difference is, that

specifying a model with an additive error term (y +ε ) as in the common regression model, does

not work well if we assume non-normal distributions or non-linear models. There, ε may not

have a simple distribution, or its variance may depend on the mean. If we transform the response

variable, we are assuming that on the transformed scale, the error distribution is normal. Using

the structure of a generalized linear model, the error distribution is separated from the (non-

linear) link function.

The formulation of the regression model as a generalized linear model gives us

considerable freedom to specify nonlinear models for non-normal data. For instance, a

generalized linear model for proportions is given by:

1) the probability distribution is binomial (µ) with mean µ,

2) the linear predictor is the multiple regression equation for η, e.g., η = β0+ β1X1+ β2X2,

3) the link function is the logistic function given by η=logit(µ).

Other link functions and error distributions are discussed by McCullagh & Nelder (1989) and

Aitkin et al. (1989). The estimation method uses the inverse of the link function to predict the

response variable. The inverse function for the logit is g(x)=exp(x)/(1+exp(x)). We could call

this the expit, and write the model for proportions as p = expit (β0+ β1X1+ β2X2). However, this
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does not show that the outcome has a binomial distribution, and in reporting the results of an

analysis with a generalized linear model it is more usual to list the three components explicitly.

But the inverse equation p = expit (β0+ β1X1+ β2X2) makes clear why modeling dichotomous

data now works; generalized linear modeling does not apply a logistic transformation to the

observed values 0 and 1, which cannot work, but it applies the inverse transformation to the

predicted values.

In principle many different error distributions can be used with any link function. But each

distribution has a specific link function for which sufficient statistics exist, which is called the

canonical link function. Table 6.1 presents some canonical link functions and the corresponding

error distribution. The canonical link has some desirable statistical properties, and McCullagh

and Nelder (1989, chap 2.) express a mild preference for using it. However, there is no

compelling reason to use only canonical links, and other link functions may be better in some

circumstances.
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Table 6.1 Some canonical link functions and their corresponding error distribution

Response link name distribution

continuous η=µ identity Normal

proportion η=ln(µ/(1-µ)) logit binomial

count η=ln(µ) log Poisson

positive η=µ−1 inverse gamma

Figure 6.1 shows the relation between the value p for a proportion and the transformed values

using a logit or probit transformation.

Figure 6.1 Plot of Logit and Probit transformed proportions P

Figure 6.1 makes clear, that the logit transformation spreads the proportions close to 0.00 or 1.00

over a larger range on the transformed scale than the probit transformation. If the proportions are

close to zero or one, and the interest is in these extreme proportions, the logit is a better

transformation, because it gives these proportions more weight in the estimation. There are other

transformations, such as the log-log transformation, given by f(p) = -log(-log(p)), and the

complementary log-log transformation, given by f(p) = log(-log(1-p)), that are sometimes used.

These functions have the interesting property that they are asymmetric. For instance, for
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proportions larger than 0.5, the log-log function behaves much like the logit, while for

proportions smaller than 0.5, it behaves more like the probit. The complementary log-log

function behaves in the opposite way. Again, McCullagh and Nelder (1989, p 108-110) express a

mild preference for the logit link function. When the modeled proportions are all between 0.1

and 0.9, the difference between the link functions is negligible.

6.2 MULTILEVEL GENERALIZED MODELS

Multilevel generalized models have been described by Wong and Mason (1985), Longford

(1990), Mislevy and Bock (1989), and Goldstein (1991, 1995). In generalized multilevel models,

the multilevel structure appears in the linear regression equation of the generalized linear model.

Thus, a two-level model for proportions is written as follows (cf. equation 2.5):

Yij = πij π ~ Binomial (nij, µ) (6.2)

πij = logit(γ00 + γ10 Xij + γ01 zj + γ11 ZjXij + u1j Xij + u0j ) (6.3),

which states that we use a logit link function, and that conditional on the predictor variables, πij is

assumed to have a error binomial distribution. Note that, in general, the lowest level residual

variance eij is not in the model equation, because it is part of the generalized linear model

specification. If the error distribution is binomial, the residual error variance is a function of the

(unknown) population proportion πij: σ² = ( πij/(1-πij). Some software allows the specification or

estimation of a scale factor for the lowest level variance. If the scale factor is set at one, the

assumption is made that the observed errors follow the theoretical error distribution exactly. If

the scale factor is significantly higher or lower than one, there is overdispersion or

underdispersion. Although the inclusion of a scale factor for the error distribution improves the

fit, and in this way takes care of the problem, if the scale factor is very different from one it is

good practice to examine the problem. Overdispersion can occur if the data have a strong

grouping structure that is not included in the model, or if there are extreme outliers.

Underdispersion often indicates a misspecification of the model, such as the omission of large
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interaction effects.

6.2.1 Estimating generalized multilevel models

The parameters of generalized linear models are estimated using maximum likelihood methods.

Multilevel models are generally also estimated using maximum likelihood methods, and it is

clear that combining multilevel and generalized linear models leads to complex models and

estimation procedures. The prevailing approach, implemented e.g., in MlwiN, HLM, and Prelis,

is to approximate the nonlinear function by an almost linear function, and to embed the

multilevel estimation in the generalized linear model. This approach is a quasi-likelihood

approach, and it confronts us with two choices that must be made. The nonlinear function is

linearized using an approximation that is known as Taylor series expansion. Taylor expansion

approximates a nonlinear function by an infinite series of terms. Often only the first term of the

series is used, which is referred to as a first order approximation. When the second term is also

used, the approximation is better. So the first choice is whether to use a first order or a second

order approximation. The second choice also involves the Taylor expansion. Taylor linearization

of a function depends on the values of its parameters. Maximum likelihood estimation proceeds

iteratively, starting with approximate values, which are then improved in each successive

iteration. Thus, the parameter values change during the iterations. In consequence, the Taylor

expansion must be repeated at each iteration, using the current estimated values of the model

parameters. And this presents us with the second choice. The Taylor expansion can use the

current values of the fixed part only, which is referred to as marginal quasi-likelihood (MQL), or

it can be improved by using the current values of the fixed part plus the residuals, which is

referred to as penalized (or predictive) quasi-likelihood (PQL).

Estimation procedures for generalized multilevel models are discussed by Goldstein (1995,

chapters 5 & 7), including procedures to model extra variation at the lowest level. Rodriguez and

Goldman (1995) show in simulated data sets with a dichotomous response variable that if the

groups at the lowest level are small, both the fixed and the random effects are severely

underestimated by the standard first order MQL method. Goldstein and Rasbash (1996) show

that using PQL and second order estimates produce estimates that have only a small bias.
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Browne (1998) repeats their analysis, using a much larger simulation setup. The extend of the

bias can be judged from Table 6.2, which summarizes some of Browne's findings.

Judging from the results in Table 6.2, first order MQL estimation appears almost useless,

especially regarding the second level variance estimate. However, Goldstein and Rasbash (1996)

argue that the data structure of this simulation is extreme, because there are large variances in

combination with very small groups. In less extreme data sets, the bias is much smaller, and even

first order MQL produces acceptable estimates. Goldstein (1995) also warns that using second

order PQL sometimes creates problems in estimation. This explains or choice problem. If second

order estimation and penalized quasi-likelihood are always better, then why not always use

these? The problem is that with complex models and/or small data sets there may be convergence

problems, and we may be forced to use first order MQL. Goldstein and Rasbash (1996) suggest

using bootstrap methods to improve the quasi-likelihood estimates, and Browne (1998) explores

Bayesian methods. These approaches will be treated in chapter XX.

Table 6.2 Summary of simulation comparing MQL and PQL
(Browne, 1998)
True value MQL - 1 PQL – 2
β0=0.65 0.47 0.61
β1=1.00 0.74 0.95
β2=1.00 0.75 0.96
β3=1.00 0.73 0.94
σe²=1.00 0.55 0.89
σu²=1.00 0.03 0.57

It is important to stress that the approach described above is a quasi-likelihood method. Since the

likelihood that is maximized is not the real likelihood, the test procedures based on comparing

the deviances of the model (which equal minus 2 times the log likelihood) are not very accurate.

The Wald test, or procedures based on bootstrap or Bayesian methods are preferred.

Some software does not use the quasi-likelihood approach. Hedeker’s programs (cf.

Hedeker & Gibbons, 1996a, 196b) use numerical integration to maximize the correct likelihood

and HLM 5.0 uses a different method to accomplish the same. If these programs are used, test

procedures based on the deviance are appropriate.
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6.3 EXAMPLE: ANALYZING PROPORTIONS

The example concerns data from a meta-analysis of studies that compared face-to-face,

telephone, and mail surveys on various indicators of data quality (De Leeuw, 1992; for a more

thorough analysis see Hox & De Leeuw, 1994). One of these indicators is the response rate; the

number of completed interviews divided by the total number of eligible sample units. Overall,

the response rates differ between the three data collection methods. In addition, the response

rates also differ across studies, which makes it interesting to analyze what study characteristics

account for these differences.

These meta-analysis data have a multilevel structure. The lowest level is the

‘condition-level,’ and the higher level is the ‘study-level.’ There are three variables at the

condition level: the proportion of completed interviews in that specific condition, the number of

eligible respondents in that condition, and a categorical variable indicating the data collection

method used. The categorical data collection variable has three categories: `face-to-face',

`telephone' and `mail.' To use it in the regression equation, it is recoded into two dummy

variables: a `telephone-dummy' and a `mail-dummy.' In the `mail' condition, the mail-dummy

equals one, and in the other two conditions it equals zero. In the `telephone' condition, the

telephone-dummy equals one, and in the other two conditions it equals zero. The face to face

condition is the reference category, indicated by a zero for both the telephone- and the

mail-dummy. There are three variables at the study level: the year of publication (0 = 1947, the

oldest study), the saliency of the questionnaire topic (1 = not salient, 3 = highly salient), and the

way the response rate is calculated. If the response rate is calculated by dividing the response by

the total sample size, we have the completion rate, if the response rate is calculated by dividing

by the sample size corrected for sampling frame errors, we have the response rate. Most studies

compared only two of the three data collection methods; a few compared all three. Omitting

missing values, there are 47 studies in which a total of 105 data collection conditions are

compared. The data set is described in the appendix.

The dependent variable is the response rate. This variable is a proportion: the number of

completed interviews divided by the number of eligible respondents. If we model these
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proportions directly by normal regression methods, we encounter two critical problems. The first

problem is the fact that proportions do not have a normal distribution, but a binomial distribution,

which (especially with extreme proportions and/or small samples) invalidates several

assumptions of the normal regression method. The second problem is that a normal regression

equation might easily predict values larger than 1 or smaller than 0 for the response rate, which

are impossible values for proportions. Using the generalized linear (regression) model for the

proportion p of potential respondents that are responding to a survey solves both problems,

which makes it a more appropriate model for these data.

As I outlined above, the generalized linear model has three distinct components: 1) a

specific error distribution, 2) a linear regression equation, and 3) a link function. The customary

link function for binomial data is the logit function: logit(x) = ln(x/(1-x). The corresponding

canonical error distribution is the binomial distribution.

The hierarchical generalized linear model for our response rate data can be described as

follows. In each condition we have a number of individuals who may or may not respond. The

population probability of responding is given by πij, that is, for each individual r in each

condition i of study j the probability of responding is the same. Note that we could have a model

where each individual's probability of responding varies, with individual level covariates to

model this variation. Then, we would model this as a three-level model, with binary outcomes at

the lowest (individual) level.1 Since in this meta-analysis example we do not have individual

data, the lowest level is the condition-level, with conditions (data collection methods) nested

within studies.

Let pij be the observed proportion respondents in condition i of study j. At the lowest level,

we use a linear regression equation to predict logit (pij). The simplest model, corresponding to the

intercept-only model in ordinary multilevel regression analysis is given by:

logit (pij) = β0j (6.4)

Note again that the usual lowest level error term eij is not included in equation (6.4). In the

binomial distribution the variance of the observed proportion depends only on the population

                                                
1Binary or dichotomous data follow a binomial distribution with n=1 for the sample size. This
special case of the binomial distribution is sometimes referred to as the Bernoulli distribution.
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proportion πij. As a consequence, in the model described by equation (6.4) the lowest level

variance is determined completely by the predicted value for pij, therefore it does not enter the

model as a separate term.1 The variance of p is modeled by

VAR(pij) = σ² (πij * (1-πij)) / nij (6.5)

In equation (6.5), σ² is not a variance, but a scale factor. Choosing the binomial distribution fixes

σ² to a default value of 1.00. As explained above, this means that the binomial model is assumed

to hold precisely, and the value 1.00 reported for σ² is not interpreted. It is possible to estimate

σ², to model under- or overdispersion.

 The model in equation (6.5) can be extended to include an explanatory variable Xij (e.g., a

variable describing the condition as a mail or face-to-face condition) at the condition level:

logit (pij) = β0j + β1j Xij (6.6)

The regression coefficients beta are assumed to vary across studies, and this variation is modeled

by the study level variable zj in the usual second level regression equations:

β0j = γ00 + γ01 zj + u0j (6.7)

β1j = γ10 + γ11 zj + u1j (6.8)

By substituting (6.7) and (6.8) into (6,6) we get the multilevel model:

logit (pij) = γ00 + γ10Xij + γ01Zj + γ11Xij Zj + u0j + u1j Xij (6.9)

The interpretation of the regression parameters in (6.9) is not in terms of the response proportions

we want to analyze, but in terms of the underlying variate defined by the logit transformation

logit(p) = ln(p/(1-p)). The logit link function transforms the proportions, which are between 0.00

                                                
1This is similar to the meta-analysis model in chapter 5. In both cases the lowest level variance
is known. However, in the meta-analysis model this variance must be supplied, while in the
model for proportions it is automatically supplied because it is a function of the estimate for pij.
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and 1.00 by definition, into values on a logistic scale that range from -∞ to +∞. The logit link is

nonlinear, and in effect assumes that near the extremes of 0.00 and 1.00 it becomes more difficult

to produce a change in the dependent variable (the proportion). For a quick examination of the

analysis results we can simply inspect the regression parameters as calculated by the program. To

understand the implications of the regression coefficients for the proportions we are modeling,

we must transform the predicted logit values back to the proportion scale.

For our analysis, we analyze response rates where available, and if these are not available in

the report, the completion rate is used. The null model for our example data is not the ‘intercept-

only’ model, but a model that contains a dummy variable that codes whether the response

proportion is a response rate or a completion rate. The lowest level regression model is:

logit (pij) = β0j + β1j resptype (6.10)

where the random intercept coefficient β0j is modeled by

β0j = γ00 + u0j (6.11)

and the slope for the variable resptype by

β1j = γ10 (6.12)

which leads by substitution to:

logit (pij) = γ00 + γ10 resptype + u0j (6.13)

Since in meta-analysis the accurate estimation of the variance terms is an important goal, the

estimation method uses the restricted maximum likelihood methods, with second order PQL

approximation. For comparison, table 6.3 presents the parameter estimates for the model given

by equation (6.13), for both first order MQL and second order PQL approximation.
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Table 6.3 Null model for response rates
Fixed part
Predictor

MQL - 1
coeff. (s.e.)

PQL – 2
coeff. (s.e.)

intercept 0.45 (.12) 0.59 (.15)
resptype 0.68 (.06) 0.71 (.06)
Random part
intercept1 1.00 1.00
intercept2 0.67 (.14) 0.93 (.20)

The PQL-2 method estimates the expected response rate as 1.30, and the MQL-1 methods as

1.13. As noted before, this refers to the underlying distribution established by the logistic link

function, and not to the proportions themselves. To determine the expected proportion, we must

use the inverse transformation for the logistic link function, given by g(x)=exp(x)/(1+exp(x)).

Using this inverse function we find an expected response rate of 0.79 for PQL-2 estimation, and

0.76 for MQL-1 estimation. This is not precisely equal to the value of 0.78 that we get as the

mean of the response rates, weighted by sample size. However, this is as it should be, since we

are using a nonlinear link function, and the value for the intercept refers to the intercept of the

underlying variate. Transforming that value back to a proportion is not the same as computing

the intercept for the proportions themselves. Nevertheless, when the proportions are not very

close to 1 or 0, the difference is usually rather small.

The value of precisely 1.00 for the variance at the lowest level looks peculiar. As I

explained above, in the binomial distribution (and also in the Poisson and gamma distributions),

the lowest level variance is completely determined when the mean (which in the binomial case is

the proportion) is known. Therefore, in these models σ² has no useful interpretation; it defines the

scale for the underlying normal variate. By default σ² is fixed at 1.00, which is equivalent to the

assumption that the binomial (Poisson, gamma) distribution holds exactly. In some applications

the variance of the error distribution turns out to be much larger than expected; there is

overdispersion (cf. McCullagh & Nelder, 1989; Aitkin et al., 1989). In fact, if we allow σ² to be

estimated, we get a value of 21.9 with standard error of 2.12. This is simply enormous. However,

we already know that important explanatory variables, such as the data collection mode, are not

in the model. Also, given the small samples at the condition level (on average 2.2 conditions per

study), this unusual estimate for the extrabinomial variation is probably highly inaccurate. For
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the moment we ignore the extrabinomial variation.

It is tempting to use the value of 1.00 as a variance estimate to calculate the intraclass

correlation for the null model in table 6.3. However, 1.00 is a scale factor. The variance of a

logistic distribution with scale factor 1 is π²/3 = 3.29 (Evans, Hastings & Peacock, 1993). So the

intraclass correlation for the null-model is ρΙ = 0.93/(0.93+3.29) = 0.22. 

The next model adds the condition level dummy variables for the telephone and the mail

condition, assuming fixed regression slopes. The equation at the lowest (condition) level is:

logit (pij) = β0j + β1j resptypeij + β2j telij + β3j mailij (6.14)

and at the study level:

β0j = γ00 + u0j (6.15)

β1j = γ10 (6.16)

β2j = γ20 (6.17)

β3j = γ30 (6.18)

By substituting (6.15) to (6.18) into (6.14) we obtain:

logit (pij) = γ00 + γ10 resptypeij + γ20 telij + γ30 mailij + u0j (6.19)

Until now, we have treated the two dummy variables as fixed. One could argue that it doesn't

make sense to model them as random, since the dummy variables are simple dichotomies that

code for our three experimental conditions. The experimental conditions are under control of the

investigator, and there is no reason to expect their effect to vary from one experiment to another.

But some more thought leads to the conclusion that the situation is more complicated. If we

conduct a series of experiments, we would expect identical results only if the research subjects

were all sampled from exactly the same population, and if the operations that define the

experimental conditions were all carried out in exactly the same way. In the present case, both

assumptions are questionable. In fact, some studies have sampled the general population, while

others sample special populations such as college students. Similarly, although most articles give
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only a very short description of the procedures that were actually used to implement the data

collection methods, it is highly likely that they were not all identical. As a consequence, even if

we don't know all the details about the populations sampled and the procedures used, we may

expect much variation between the conditions in the way they actually were implemented. This

should result in random regression coefficients in our model. Thus, we analyze a model in which

the slope coefficients for the dummy variables for the telephone-and the mail condition are

assumed to be random across studies.

The model with random slopes for the telephone and mail condition is given by

β0j = γ00 + u0j

β1j = γ10

β2j = γ20 + u2j

β3j = γ30 + u3j

which gives

logit (pij) = γ00 + γ10 resptypeij + γ20 telij + γ30 mailij + u0j + u2j telij +  u3j mailij (6.20)

The results for the models specified by (6.19) and (6.20) are given in table 6.4.

Table 6.4 Models for response rates in different conditions
Fixed part
Predictor

conditions fixed
coeff. (s.e.)

conditions random
coeff. (s.e.)

intercept 0.90 (.14) 1.17 (.21)
resptype 0.53 (.06) 0.20 (.23)
telephone -0.16 (.02) -0.20 (.10)
mail -0.49 (.03) -0.58 (.16)
Random part
intercept1 1.00 1.00
intercept2 0.86 (.18) 0.87 (.20)
telephone 0.26 (.08)
mail 0.59 (.20)

The intercept represents the condition in which all explanatory variables are zero. When the
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telephone-dummy and the mail-dummy are both equal to zero, we have the face-to-face

condition. Thus, the values for the intercept in table 6.4 estimate the expected completion rate in

the face-to-face condition, 0.90 in the fixed model. The intercept plus the slope for resptype

equals 1.43. These values on the logit scale translate to an expected completion rate of 0.71 and

response rate of 0.81 for the average face-to-face survey. The negative values for the slope

coefficients for the telephone and mail dummy-variables indicate that in these conditions the

expected response is lower.  To find out how much lower, we must use the regression equation to

predict the response in the three conditions, and transform these values (which refer to the

underlying variate) back to proportions. For the telephone conditions we expect an outcome of

1.26, and for the mail condition 0.94. These values on the logit scale translate to an expected

response rate of 0.78 for the telephone and 0.72 for the mail condition.

The study level variances of the intercept and the conditions are obviously significant, and

we may attempt to explain these using the known differences between the studies. In our

example data we have two study level explanatory variables: year of publication, and the salience

of the questionnaire topic. Since not all studies compare all three data collection methods, it is

quite possible that study level variables also explain between condition variance. For instance, if

older studies tend to have a higher response rate, and the telephone method is only included in

the more recent studies (telephone interviewing is, after all, a relatively new method), the

telephone condition may seem to be characterized by low response rates. In that case, however,

after correcting for the year of publication, the telephone response rates should look better. We

cannot inspect the condition level variance to see if the higher level variables explain condition

level variability, because the condition level variance is always fixed at 1.00.

Both study level variables make a significant contribution to the regression equation, but

only the year of publication interacts with the two conditions. Thus, the final model for these data

is given by

logit (pij) = β0j + β1j resptypeij + β2j telij + β3j mailij

at the lowest (condition) level, and at the study level:

β0j = γ00 + γ01 yearj + γ02 saliencyj + u0j
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β1j = γ10

β2j = γ20 + γ21 yearj + u2j

β3j = γ30 + γ31 yearj +u3j

which produces the combined equation

logit (pij) = γ00 + γ10 resptypeij + γ20 telij + γ30 mailij + γ01 yearj + γ02 saliencyj +

γ21 telij yearj + γ31 mailij yearj +  u0j + u2j telij +  u3j mailij (6.21)

The results for the model specified by equation (6.21) are given in table 6.5.

Table 6.5 Models for response rates in different conditions,
model with random slopes and cross-level interactions
Fixed part
Predictor

no interactions
coeff. (s.e.)

with interactions
coeff. (s.e.)

intercept 0.93 (.43) 1.26 (.46)
resptype 0.33 (.21) 0.28 (.21)
telephone -0.17 (.10) -0.91 (.34)
mail -0.58 (.15) -1.45 (.46)
year -0.02 (.01) -0.03 (.01)
saliency 0.63 (.17) 0.64 (.17)
tel * year 0.02 (.01)
mail * year 0.03 (.01)
Random part
intercept1 1.00 1.00
intercept2 0.63 (.14) 0.63 (.14)
telephone 0.26 (.07) 0.24 (.07)
mail 0.57 (.19) 0.43 (.15)

Compared to the earlier results, in the model without the interactions the regression coefficients

are about the same, but in the model with the cross-level interactions some values are different.

This is not informative, because the slopes for the conditions are involved in an interaction with

the year of publication, and should therefore be considered together.

As I noted above, the regression coefficients have to be interpreted in terms of the

underlying variate. Also, the logit transformation implies that raising the response becomes more
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difficult as we approach the limit of 1.00. To show what this means, I present the predicted

response for the three methods as logits (in parentheses) and proportions in the next table, both

for a very salient (saliency=2) and a non-salient (saliency=0) questionnaire topic. To compute

these numbers we must fill in the regression equation implied by the last column of table 6.5 and

use the inverse logit transformation given earlier to transform the predicted logits back to

proportions. The year is coded as 1947=0, but for the calculations in table 6.6 the year was set at

1990 (year=43). As the expected response rates in table 6.6 show, the differences between the

three modes are small, while the effect of the saliency of the topic is much larger.

Table 6.6 Response rates (logits) in 1990 based in the cross-level interaction model

Topic face to face telephone mail

not salient 0.56 (.25) 0.55 (.20) 0.52 (.09)

salient 0.71 (.89) 0.70 (.84) 0.68 (.73)

To gain a better picture understanding of the development of response rates over the years, it is

useful to predict the response rates from the model and plot these predictions over the years.

Figure 6.2 Predicted response rates over the years

Figure 6.2 presents such predictions, based on the cross-level interaction model, for the response
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rates, with the saliency set to intermediate. The oldest study was published in 1947, the latest in

1992, so the values after that are an extrapolation. Figure 6.2 show that the cross level model

implies that at the beginning, in 1947, the differences between the three data collection modes

were large. After that, the response rates for face-to-face and telephone surveys have declined,

while those for mail surveys stayed stable. As a result, the response rates for the three data

collection modes have become more similar. Hox and De Leeuw (1994) analyze the same data;

using a larger model with more explanatory variables and 1st order MQL estimation, they report

a similar pattern.

As a final analysis, we can estimate the cross-level interaction model again, using a

different link function. For the cross-level interaction model, the deviance is estimated as -136.8.

For the probit link, the deviance is 138.1, and for the log-log link -138.9. Since deviance using

quasi-likelihood estimation is not estimated very accurately, these values should not be used for

formal comparisons. However, they are close, so the choice of a specific link function is not very

important for these data. The estimates with different link functions are also close.

6.4 ANALYZING COUNTS

Nonlinear relations also result in the analysis of data that are counts. If we count the occurrences

of relatively rare events, such as fires in precincts or accidents on road stretches, the data follow a

Poisson distribution. In a generalized linear model, such data are usually analyzed using a

Poisson error distribution, and a log link. The issues in analyzing count models are much the

same as in analyzing proportions. The usual approach is to apply quasi-likelihood estimation

with Taylor linearization, with some software allowing a choice between first order or second

order Taylor linearization, MQL or PQL estimation, and possible modeling overdispersion. An

alternative to the Poisson distribution is the negative binomial distribution, which can incorporate

overdispersion by estimating an extra parameter in the variance function (cf. McCullagh &

Nelder, 1989, p373). Note that the Poisson distribution assumes relatively rare events. Counts of

relatively frequent events, such as the number of cigarettes smoked by a smoker, have different

properties. The most important property is that counts are always positive integeres. If thre data

do not have a normal distribution, the usual link function is the inverse function, coupled with a
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gamma error distribution. Current multilevel software does not support this, but using macros it

could be modeled in MlwiN. Alternatively, an empirical transformation can be used. An example

of modeling counts is a study by Pickery and Loosveldt, who model the number of questions

missed in a questionnaire. Since missing a question is a relatively rare event, the count of missed

questions follows a Poisson distribution nicely. Pickery and Loosveldt use a generalized

multilevel model to analyze the effect of respondent and interviewer characteristics.


